
THEOREM:

Let S = {ū1, . . . , ūp} be an orthogonal
basis for a subspace W of Rn. For each
ȳ in W the weights in the linear combi-
nation

ȳ = c1ū1 + . . . + cpūp

are given by

cj =
ȳ · ūj

ūj · ūj
(j = 1, . . . , p).

PROBLEM:

Let S = {ū1, ū2, ū3}, where

ū1 =

 3
1
1

 , ū2 =

 −1
2
1

 , ū3 =

 −1/2
−2
7/2

 .

Find coordinates of ȳ = (6, 1, −8) in S.



SOLUTION:

We have:

ȳ · ū1 = 11, ȳ · ū2 = −12, ȳ · ū3 = −33

and

ū1 · ū1 = 11, ū2 · ū2 = 6, ū3 · ū3 = 33/2,

so

c1 =
ȳ · ū1

ū1 · ū1
=

11

11
= 1

c2 =
ȳ · ū2

ū2 · ū2
=

−12

6
= −2

c3 =
ȳ · ū3

ū3 · ū3
=

−33

33/2
= −2

therefore

[x̄]S =

 c1
c2
c3

 =

 1
−2
−2

 .



THEOREM (The Gram-Schmidt Pro-
cess):

Given an arbitrary basis {x̄1, . . . , x̄p} for
a subspace W of Rn, define

v̄1 = x̄1

v̄2 = x̄2 −
x̄2 · v̄1

v̄1 · v̄1
v̄1

v̄3 = x̄3 −
x̄3 · v̄1

v̄1 · v̄1
v̄1 −

x̄3 · v̄2

v̄2 · v̄2
v̄2

. . .

v̄p = x̄p −
x̄p · v̄1

v̄1 · v̄1
v̄1 − . . . −

x̄p · v̄p−1

v̄p−1 · v̄p−1
v̄p−1

Then {v̄1, . . . , v̄p} is an orthogonal basis
for W.



EXAMPLE:

Let

x̄1 =


1
1
1
1

 , x̄2 =


0
1
1
1

 , x̄3 =


0
0
1
1


is the basis for a subspace W of R4. Find
an orthogonal basis for W.



SOLUTION:

Step 1: Put

v̄1 = x̄1 =


1
1
1
1

 .

Step 2: Put

v̄2 = x̄2 −
x̄2 · v̄1

v̄1 · v̄1
v̄1 =


0
1
1
1

 −
3

4


1
1
1
1



=


−3/4

1/4
1/4
1/4

 .



Step 3: Put

v̄3 = x̄3 −
x̄3 · v̄1

v̄1 · v̄1
v̄1 −

x̄3 · v̄2

v̄2 · v̄2
v̄2

=


0
0
1
1

 −
2

4


1
1
1
1

 −
2

12


−3

1
1
1



=


0

−2/3
1/3
1/3

 .



THEOREM:

Let S = {ū1, . . . , ūp} be an orthogonal
basis for a subspace W of Rn. For each
ȳ in W the weights in the linear combi-
nation

ȳ = c1ū1 + . . . + cpūp

are given by

cj =
ȳ · ūj

ūj · ūj
(j = 1, . . . , p).



PROOF:

Let c1, . . . , cp be such numbers that

ȳ = c1ū1 + c2ū2 + . . . + cpūp. (∗)

If we multiply both sides of (∗) by ū1,
we get

ȳ · ū1

= c1ū1 · ū1 + c2ū2 · ū1 + . . . + cpūp · ū1

= c1ū1 · ū1 + 0 + . . . + 0

= c1ū1 · ū1

because of orthogonality of ū1, . . . , ūp.
So, ȳ · ū1 = c1ū1 · ū1, therefore

c1 =
ȳ · ū1

ū1 · ū1
.

Similarly, if we multiply both sides of
(∗) by ūj, we deduce

cj =
ȳ · ūj

ūj · ūj
(j = 1, . . . , p).



PROBLEM:

Let ū and ȳ be nonzero vectors in Rn.
Find vectors ŷ and z̄ such that

ȳ = ŷ + z̄,

where ŷ is a multiple of ū and z̄ is or-
thogonal to ū.



SOLUTION:

Rewrite ȳ = ŷ + z̄, as z̄ = ȳ − ŷ and
multiply both sides by ū :

z̄ · ū = (ȳ − ŷ) · ū

But z̄ is orthogonal to ū, therefore

0 = (ȳ − ŷ) · ū. (∗)

Since ŷ is a multiple of ū, we have

ŷ = αū, where α is a scalar.

Substituting this into (∗), we get

0 = (ȳ − αū) · ū = ȳ · ū − αū · ū,

hence

α =
ȳ · ū

ū · ū
and ŷ =

ȳ · ū

ū · ū
ū.

DEFINITION:

The vector ŷ is called the orthogonal
projection of ȳ onto ū and denoted by

projūȳ.

The vector z̄ is called the component of ȳ
orthogonal to ū.



EXAMPLE:

Let ȳ =

[
7
6

]
and ū =

[
4
2

]
. Find the

orthogonal projection of ȳ onto ū. Write
ȳ as a sum of two orthogonal vectors,
one in Span {ū} and one orthogonal to
ū.



SOLUTION:

We first find the orthogonal projection
of ȳ onto ū. We have

ŷ =
ȳ · ū

ū · ū
ū =

7 · 4 + 6 · 2

4 · 4 + 2 · 2
ū = 2

[
4
2

]
=

[
8
4

]
.

We now find the component z̄. We have

z̄ = ȳ − ŷ =

[
7
6

]
−

[
8
4

]
=

[
−1

2

]
.

Finally, we write ȳ as a sum of two or-
thogonal vectors, one in Span {ū} and
one orthogonal to ū :[

7
6

]
=

[
8
4

]
+

[
−1

2

]
.



REMARK:

Note that the orthogonal projection of
ȳ onto ū is exactly the same as the or-
thogonal projection of ȳ onto cū, where
c is any nonzero scalar. Hence this pro-
jection is determined by the subspace L
spanned by ū. Therefore sometimes we
denote ŷ by

projLȳ.

So,

ŷ = projūȳ = ȳprojLȳ =
ȳ · ū

ū · ū
ū.



THEOREM(The Orthogonal Decompo-
sition Theorem):

Let W be a subspace of Rn. Then each
ȳ in Rn can be written uniquely in the
form

ȳ = ŷ + z̄,

where ŷ is in W and z̄ is in W ⊥. In fact,
if {ū1, . . . , ūp} is any orthogonal basis of
W, then

ŷ =
ȳ · ū1

ū1 · ū1
ū1 + . . . +

ȳ · ūp

ūp · ūp
ūp

and z̄ = ȳ − ŷ.


