THEOREM:

Let 8 = {u1,...,Up} be an orthogonal
basis for a subspace W of R"™. For each
y in W the weights in the linear combi-
nation

g:C]_ﬁ]__I_ooo_I_Cpap

are given by

Y- u4 :
Cj = — _J (]:17 7p)
’U,] "U,J
PROBLEM:
Let 8§ = {u1, ug, ug}, where
3 -1 —1/2
uy1 = | 1|, ug = 2|, ug = —2|.
1 1 i 7/2_

Find coordinates of y = (6,1, —8) in 8.



SOLUTION:
We have:

uy-uyp = 11, ug-ug = 6, ug-uz = 33/2,

SO
(VIRV} 11
CcCl1 = — — =1
U1 * Uq 11
TR —12
Co = _y _2 —_ — = -9
u9 « U9 6
Y- us —33
63 p— — —_— = —
ug - us 33/2
therefore
e EE
[Zlg = | ca | = | —2
3] L2




THEOREM (The Gram-Schmidt Pro-

cess):

Given an arbitrary basis {Z1,...,Zp} for
a subspace W of R"™, define

V1 = X1
_ _ T2
V2 = L2 — —
1

_ _ r3
V3 = L3 — —
U1

— Lp *
fvp_wp—/l_)l

Then{’ﬁl,..

for W.
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., Up} is an orthogonal basis



EXAMPLE:
Let

-0 O

T1 = ’ L3 =

e
= )

1

is the basis for a subspace W of R*. Find
an orthogonal basis for W.



SOLUTION:
Step 1: Put

U1 _

1

R o W =




Step 3: Put

v3

T3+ U1 _

rg3 —

V1 - V1

e

V1 —




THEOREM:

Let § = {u41,...,Up} be an orthogonal
basis for a subspace W of R"™. For each
y in W the weights in the linear combi-
nation

'g201ﬁ1+...+6pap

are given by




PROOQOF:

Let c1,...,cp be such numbers that

Yy = c1uy + cu2 + ...+ Cplp. ()
If we multiply both sides of (x) by w1,
we get

Y- uy
= Cluy - Ul + Ccu2 - Ul + ...+ Cplp * U]
=ciuy+-u;1+0+...4+0

= c1uy - uq
because of orthogonality of uq,..., up.
So, Yy - U1 = cjuy * Uy, therefore
Y- uy
Uy - Uy
Similarly, if we multiply both sides of
(*) by u;, we deduce
Y- u;

Cj = ———— (3=1,...,p).
Uj - Uy

Cl1 —




PROBLEM:

Let w and y be nonzero vectors in R".
Find vectors y and z such that

y=9+ z,
where 7 is a multiple of @ and Z is or-
thogonal to u.



SOLUTION:
Rewrite y = ¢y + 2z, as 2 = y — ¢y and
multiply both sides by u :
2a=(5-19) @
But z is orthogonal to u, therefore
0=(y—9)-u. (%)
Since ¢ is a multiple of u, we have

Yy = au, where « is a scalar.
Substituting this into (x), we get

0=(§J—ail) - 4=7 14— at-,

hence
y-u . Yy-u_
a=—— and y=—-1u
u-u u-u
DEFINITION:

The vector ¢ is called the orthogonal
projection of 4y onto # and denoted by

Projgy-
The vector Z is called the component of ¥y
orthogonal to .




EXAMPLE:

Let y = [,(73] and u = [;l] . Find the
orthogonal projection of §y onto u. Write
Yy as a sum of two orthogonal vectors,
one in Span {#} and one orthogonal to

Uu.




SOLUTION:

We first find the orthogonal projection
of y onto u. We have

) Yy-u _ 7-44+6-2 [4] [8]
u =2 = .

=0 =
I u-u 44+ 2.2 2 4

We now find the component z. We have

-[1)- (-3

Finally, we write y as a sum of two or-
thogonal vectors, one in Span {u} and
one orthogonal to u :

-1

Qﬁ)

zZ=1Y —



REMARK:

Note that the orthogonal projection of
y onto u is exactly the same as the or-
thogonal projection of y onto cu, where
c is any nonzero scalar. Hence this pro-
jection is determined by the subspace L
spanned by u. Therefore sometimes we
denote y by

pProjry.
So,

Y = Projgy = Yprojry = —ﬁu



THEOREM (The Orthogonal Decompo-
sition Theorem):

Let W be a subspace of R™. Then each
y in R"™ can be written uniquely in the
form

y=9+z,
where ¢ is in W and Z is in W-L. In fact,
if {@1,...,Up} is any orthogonal basis of
W, then
Yy-uyg _ Yy-up _

g:_ _’u,]_—I_...I_ _uP
U]_‘U]_ uP'uP

and z = y — v.



