DEFINITION:

A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following 10 axioms (or rules):

- 1. The sum of \bar{u} and \bar{v} , denoted by $\bar{u} + \bar{v}$, is in V.
 - 2. $\bar{u} + \bar{v} = \bar{v} + \bar{u}$.
 - 3. $(\bar{u} + \bar{v}) + \bar{w} = \bar{u} + (\bar{v} + \bar{w})$.
- 4. There is a zero vector $\bar{0}$ in V such that $\bar{u} + \bar{0} = \bar{u}$.
- 5. For each \bar{u} in V, there is a vector $-\bar{u}$ in V such that $\bar{u} + (-\bar{u}) = \bar{0}$.
- 6. The scalar multiple of \bar{u} by c, denoted by $c\bar{u}$, is in V.
 - 7. $c(\bar{u}+\bar{v})=c\bar{u}+c\bar{v}$.
 - 8. $(c+d)\bar{u}=c\bar{u}+d\bar{u}$.
 - 9. $c(d\bar{u}) = (cd)\bar{u}$.
 - 10. $1 \cdot \bar{u} = \bar{u}$.

These axioms must hold for all vectors \bar{u} , \bar{v} , and \bar{w} in V and all scalars c and d.

$$1. \,\, R^n = \left\{ egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix} : x_1, \ldots, x_n \in R
ight\}$$

2. The set P_n of polynomials of degree at most n:

$$\bar{p}(t) = a_n t^n + \ldots + a_2 t^2 + a_1 t + a_0$$

where the coefficients a_n, \ldots, a_0 and the variable t are real numbers.

3. The set of all real-valued functions defined on R.

DEFINITION:

A subspace of a vector space V is a subset \overline{H} of \overline{V} that has 3 properties:

- 1. The zero vector of V is in H.
- 2. H is closed under vector addition. That is, for each \bar{u} and \bar{v} in H, the sum $\bar{u} + \bar{v}$ is in H.
- 3. H is closed under multiplication by scalars. That is, for each \bar{u} in H and each scalar c, the vector $c\bar{u}$ is in H.

EXAMPLE:

The set consisting of only the zero vector $\bar{0}$ in a vector space V is a subspace of V, called the zero subspace and written as $\{\bar{0}\}$.

WARNING:

 R^2 is <u>not</u> a subspace of R^3 , because R^2 is not a subset of R^3 . However, P_2 is a subspace of P_3 .

THEOREM:

If $\bar{v}_1, \ldots, \bar{v}_p$ are in a vector space V, then Span $\{\bar{v}_1, \ldots, \bar{v}_p\}$ is a subspace of V.

EXAMPLE:

Let

$$ar{v}_1 = egin{bmatrix} 1 \ 2 \ 3 \end{bmatrix} & ar{v}_2 = egin{bmatrix} 1 \ 1 \ 2 \end{bmatrix}.$$

By the Theorem above

$$\mathrm{Span}\{ar{v}_1,ar{v}_2\}$$

is a subspace of R^3 .

The set

$$H = \left\{egin{bmatrix} 4a-b\ 2b\ a-2b\ a-b \end{bmatrix}: a,b\in R
ight\}$$

is a subspace of \mathbb{R}^4 , because

$$egin{bmatrix} 4a-b \ 2b \ a-2b \ a-b \end{bmatrix} = a egin{bmatrix} 4 \ 0 \ 1 \ 1 \end{bmatrix} + b egin{bmatrix} -1 \ 2 \ -2 \ -1 \end{bmatrix}.$$

Let H be the set of all vectors of the form

$$egin{bmatrix} 3a+b \ 4 \ a-5b \end{bmatrix}$$

where a and b are arbitrary scalars. Show that H is not a vector space.

SOLUTION:

H is not a vector space, since $\overline{0} \not\in H$ (the second entry is always nonzero).

DEFINITION:

Let A be an $m \times n$ matrix.

- 1. The <u>null space</u> of A, written as Nul A, is the set of all solutions to the homogeneous equation $A\bar{x} = \bar{0}$.
- 2. The <u>row space</u> of A, written as Row A, is the <u>set</u> of all linear combinations of the row vectors of A.
- 3. The column space of A, written as Col A, is the set of all linear combinations of the columns of A. So, if $A = [\bar{a}_1...\bar{a}_n]$, then Col $A = \operatorname{Span}\{\bar{a}_1,...,\bar{a}_n\}$.

REMARK:

Nul A and Row A are subspaces of R^n , whereas Col A is a subspace of R^m .

Find a spanning set for the column space, row space, and null space of the matrix

$$A = \left[egin{array}{cccc} -3 & 6 & -1 & 1 & -7 \ 1 & -2 & 2 & 3 & -1 \ 2 & -4 & 5 & 8 & -4 \end{array}
ight].$$

SOLUTION:

(a) Obviously, columns of A, i.e.

$$\left[egin{array}{c} -3 \ 1 \ 2 \ \end{array}
ight] \left[egin{array}{c} 6 \ -2 \ -4 \ \end{array}
ight] \left[egin{array}{c} -1 \ 2 \ 5 \ \end{array}
ight] \left[egin{array}{c} 1 \ 3 \ 8 \ \end{array}
ight] \left[egin{array}{c} -7 \ -1 \ -4 \ \end{array}
ight]$$

form the spanning set for Col A.

(b) Obviously, rows of A, i.e.

$$(-3, \quad 6, \, -1, \, 1, \, -7) \ (1, \, -2, \quad 2, \, 3, \, -1) \ (2, \, -4, \quad 5, \, 8, \, -4)$$

form the spanning set for the row space of A.

(c) To find a spanning set for Nul A, we find the general solution of $A\bar{x} = \bar{0}$:

$$[A \ ar{0}] \sim egin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \ 0 & 0 & 1 & 2 & -2 & 0 \ 0 & 0 & 0 & 0 & 0 \ \end{pmatrix},$$

therefore

$$\left\{egin{array}{l} x_1-2x_2-x_4+3x_5=0\ x_3+2x_4-2x_5=0, \end{array}
ight.$$

$$\begin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2+x_4-3x_5 \ x_2 \ -2x_4+2x_5 \ x_4 \ x_5 \end{bmatrix}$$

$$=x_2egin{bmatrix}2\1\0\0\0\end{bmatrix}+x_4egin{bmatrix}1\0\-2\1\0\end{bmatrix}+x_5egin{bmatrix}-3\0\2\0\1\end{bmatrix}, \ oxed{w}$$

so Nul $A = \text{Span } \{\bar{u}, \bar{v}, \bar{w}\}.$

DEFINITION:

Let H be a subspace of a vector space V. A set of vectors

$$\mathfrak{B} = \{\bar{b}_1, \dots, \bar{b}_p\}$$

in V is a basis for H if

- (a) B is a linearly independent set;
- (b) $H = \text{Span } \{\bar{b}_1, \dots, \bar{b}_p\}.$

STANDARD BASIS FOR \mathbb{R}^n :

$$ar{e}_1 = egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix}, \; ar{e}_2 = egin{bmatrix} 0 \ 1 \ dots \ 0 \end{bmatrix}, \ldots, ar{e}_n = egin{bmatrix} 0 \ 0 \ dots \ 1 \end{bmatrix}$$

STANDARD BASIS FOR P_n :

Vectors

$$\bar{e}_1 = 1, \ \bar{e}_2 = t, \ \bar{e}_3 = t^2, \dots, \ \bar{e}_{n+1} = t^n$$

form the so-called standard basis for the vector space P_n .

<u>TEST 1</u>:

Vectors $\bar{v}_1, \ldots, \bar{v}_p$ are linearly independent if and only if the matrix $A = [\bar{v}_1 \ldots \bar{v}_p]$ has p pivots.

TEST 2:

Vectors $\bar{v}_1, \ldots, \bar{v}_p$ span R^n if and only if the matrix $A = [\bar{v}_1 \ldots \bar{v}_p]$ has n pivots.

TEST 3:

Vectors $\bar{v}_1, \ldots, \bar{v}_p$ form a basis of R^n if and only if the matrix $A = [\bar{v}_1 \ldots \bar{v}_p]$ has n pivots and p = n.

The set of vectors

$$ar{v}_1 = egin{bmatrix} 3 \ 0 \ -6 \end{bmatrix}, \ ar{v}_2 = egin{bmatrix} -4 \ 1 \ 7 \end{bmatrix}, \ ar{v}_3 = egin{bmatrix} -2 \ 1 \ 5 \end{bmatrix}.$$

form a basis for R^3 , since

$$egin{bmatrix} 3 & -4 & -2 \ 0 & 1 & 1 \ -6 & 7 & 5 \end{bmatrix} \sim egin{bmatrix} 3 & -4 & -2 \ 0 & 1 & 1 \ 0 & -1 & 1 \end{bmatrix} \sim egin{bmatrix} 3 & -4 & -2 \ 0 & 1 & 1 \ 0 & -1 & 1 \end{bmatrix},$$

and we have 3 vectors and 3 pivots.

The set of vectors

$$3+7t$$
, $5+t-2t^3$, $t-2t^2$, $1+16t-6t^2+2t^3$ do not form a basis for P_3 , since

$$egin{bmatrix} 3 & 5 & 0 & 1 \ 7 & 1 & 1 & 16 \ 0 & 0 & -2 & -6 \ 0 & -2 & 0 & 2 \end{bmatrix} \sim egin{bmatrix} 3 & 5 & 0 & 1 \ 0 & 32 & -3 & -41 \ 0 & 0 & 1 & 3 \ 0 & 0 & 0 & 0 \end{bmatrix},$$

and we have 3 pivots and 4 columns.

SOLUTION (DETAILS):

Let $\mathcal{B} = \{1, t, t^2, t^3\}$ be the standard basis of P_3 . Then polynomials

$$3+7t$$
, $5+t-2t^3$, $t-2t^2$, $1+16t-6t^2+2t^3$

produce coordinate vectors

$$egin{bmatrix} 3 \ 7 \ 0 \ 0 \end{bmatrix}, \quad egin{bmatrix} 5 \ 1 \ 0 \ -2 \end{bmatrix}, \quad egin{bmatrix} 0 \ 1 \ -2 \ 0 \end{bmatrix}, \quad egin{bmatrix} 1 \ 16 \ -6 \ 2 \end{bmatrix}$$

relative to B. We have:

$$egin{bmatrix} 3 & 5 & 0 & 1 \ 7 & 1 & 1 & 16 \ 0 & 0 & -2 & -6 \ 0 & -2 & 0 & 2 \ \end{bmatrix} \sim egin{bmatrix} 3 & 5 & 0 & 1 \ 0 & 32 & -3 & -41 \ 0 & 0 & 1 & 3 \ 0 & 0 & 0 & 0 \ \end{bmatrix}.$$

Since there are 3 pivots and 4 columns, the polynomials

$$3+7t, \ 5+t-2t^3, \ t-2t^2, \ 1+16t-6t^2+2t^3$$
 do not form a basis for P_3 .

Find bases for the row space, the column space, and the null space of the matrix

$$A = \left[egin{array}{ccccc} -1 & 4 & -2 & 0 & -3 \ 2 & 1 & 1 & -1 & 0 \ 0 & 9 & -3 & -1 & -6 \end{array}
ight]$$

SOLUTION:

Using elementary row operations, we get

$$\begin{bmatrix} -1 & 4 & -2 & 0 & -3 \\ 2 & 1 & 1 & -1 & 0 \\ 0 & 9 & -3 & -1 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & -4 & 2 & 0 & 3 \\ 0 & 9 & -3 & -1 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) Since the first two rows have pivots, they form a basis for the row space of A.
- (b) Since the first two columns have pivots, they form a basis for $Col\ A$.

(c) Finally, for Nul A we need the reduced echelon form. We have:

$$\begin{bmatrix} -1 & 4 & -2 & 0 & -3 \\ 2 & 1 & 1 & -1 & 0 \\ 0 & 9 & -3 & -1 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{2}{3} & -\frac{4}{9} & \frac{1}{3} \\ 0 & 1 & -\frac{1}{3} & -\frac{1}{9} & -\frac{2}{3} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

therefore the corresponding system is

$$\begin{cases} x_1 + \frac{2}{3}x_3 - \frac{4}{9}x_4 + \frac{1}{3}x_5 = 0 \\ x_2 - \frac{1}{3}x_3 - \frac{1}{9}x_4 - \frac{2}{3}x_5 = 0 \end{cases}$$

Write the general solution in the parametric form

$$egin{bmatrix} {
m cric \ form} \ & egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \ x_5 \end{bmatrix} &= egin{bmatrix} -rac{2}{3}x_3 + rac{4}{9}x_4 - rac{1}{3}x_5 \ rac{1}{3}x_3 + rac{1}{9}x_4 + rac{2}{3}x_5 \ rac{x_3}{3} \ rac{x_4}{x_5} \end{bmatrix}$$

$$=x_{3}egin{bmatrix} -rac{2}{3} \ rac{1}{3} \ rac{1}{3} \ 1 \ 0 \ 0 \ \end{bmatrix} +x_{4}egin{bmatrix} rac{4}{9} \ rac{1}{9} \ 0 \ 1 \ 0 \ \end{bmatrix} +x_{5}egin{bmatrix} -rac{1}{3} \ rac{2}{3} \ 0 \ 0 \ \end{bmatrix}$$

so $\{\bar{v}_1, \bar{v}_2, \bar{v}_3\}$ is the basis for Nul A.

DEFINITION:

Suppose $\mathcal{B} = \{\bar{b}_1, \dots, \bar{b}_n\}$ is a basis for a vector space V and \bar{x} is in V. The coordinates of \bar{x} relative to the basis \mathcal{B} are the weights c_1, \dots, c_n such that

$$ar{x} = c_1 ar{b}_1 + \ldots + c_n ar{b}_n.$$

NOTATION:

$$[ar{x}]_{\mathcal{B}} = \left[egin{array}{c} c_1 \ \ldots \ c_n \end{array}
ight]$$

Let

$$ar{b}_1 = \left[egin{array}{c} 1 \ 0 \end{array}
ight], \,\, ar{b}_2 = \left[egin{array}{c} 1 \ 2 \end{array}
ight], \,\, ar{x} = \left[egin{array}{c} 1 \ 6 \end{array}
ight].$$

Find coordinates of \bar{x} relative to the basis $\mathcal{B} = \{\bar{b}_1, \ \bar{b}_2\}.$

SOLUTION:

We have

$$\left[egin{array}{cccc} 1 & 1 & 1 \ 0 & 2 & 6 \end{array}
ight] \sim \left[egin{array}{cccc} 1 & 1 & 1 \ 0 & 1 & 3 \end{array}
ight] \sim \left[egin{array}{cccc} 1 & 0 & -2 \ 0 & 1 & 3 \end{array}
ight],$$

therefore

$$c_1 = -2$$
 and $c_2 = 3$,

SO

$$[ar{x}]_{\mathfrak{B}}=\left[egin{array}{c} -2\ 3 \end{array}
ight].$$

Let $\mathcal{E} = \{1, t, t^2\}$ be the standard basis for P_2 . Find coordinates of the vector

$$\bar{p}(t) = -4 + 3t - 5t^2$$

relative to \mathcal{E} .

SOLUTION:

By the definition above we have:

$$[ar{p}]_{\mathcal{E}} = egin{bmatrix} -4 \ 3 \ -5 \end{bmatrix}.$$

Determine whether the polynomials

$$1+t, 1+t^2, t+t^2$$

form a basis for P_2 . If "Yes", find coordinates of the vector

$$\bar{p}(t) = -4 + 3t - 5t^2$$

relative to this basis.

SOLUTION:

Let $\mathcal{E} = \{1, t, t^2\}$ be the standard basis of P_2 . Then polynomials

$$1+t, 1+t^2, t+t^2$$

produce coordinate vectors

$$\left[egin{array}{c}1\\1\\0\end{array}
ight], \quad \left[egin{array}{c}1\\0\\1\end{array}
ight], \quad \left[egin{array}{c}0\\1\\1\end{array}
ight]$$

relative to \mathcal{E} . We have:

$$egin{bmatrix} 1 & 1 & 0 \ 1 & 0 & 0 \ 0 & 1 & 1 \end{bmatrix} \sim egin{bmatrix} 1 & 1 & 0 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{bmatrix}.$$

Since there are 3 pivots and 3 columns, the polynomials

$$1+t, 1+t^2, t+t^2$$

form a basis for P_2 .

Let

$$\mathcal{B} = \{1+t, 1+t^2, t+t^2\}.$$

To find coordinates of the vector

$$\bar{p}(t) = -4 + 3t - 5t^2$$

relative to B, we consider the augmented matrix

$$egin{bmatrix} 1 & 1 & 0 & -4 \ 1 & 0 & 1 & 3 \ 0 & 1 & 1 & -5 \end{bmatrix} \sim egin{bmatrix} 1 & 0 & 0 & 2 \ 0 & 1 & 0 & -6 \ 0 & 0 & 1 & 1 \end{bmatrix},$$

therefore

$$[ar{p}]_{\mathcal{B}} = \left[egin{array}{c} 2 \ -6 \ 1 \end{array}
ight].$$

THEOREM:

Let $\mathcal{B} = \{\bar{b}_1, \dots, \bar{b}_n\}$ and $\mathcal{C} = \{\bar{c}_1, \dots, \bar{c}_n\}$ be bases of a vector space V. Then there is a unique matrix P such that

$$[ar{x}]_{\mathfrak{C}} = \mathop{P}_{\mathfrak{C} \longleftarrow \mathfrak{B}} [ar{x}]_{\mathfrak{B}},$$

where

$$P_{\mathcal{C} \longleftarrow \mathcal{B}} = [[\bar{b}_1]_{\mathcal{C}} \ [\bar{b}_2]_{\mathcal{C}} \ \dots \ [\bar{b}_n]_{\mathcal{C}}].$$

REMARK:

One can show that

$$\begin{pmatrix} P \\ \mathcal{C} \leftarrow \mathcal{B} \end{pmatrix}^{-1} = P \\ \mathcal{B} \leftarrow \mathcal{C}$$

Let $\mathfrak{B} = \{\bar{b}_1, \bar{b}_2\}$ and $\mathfrak{C} = \{\bar{c}_1, \bar{c}_2\}$ be bases for a vector space V, such that

$$ar{b}_1=4ar{c}_1+ar{c}_2$$

and

$$\bar{b}_2 = -6\bar{c}_1 + \bar{c}_2.$$

Suppose $\bar{x} = 3\bar{b}_1 + \bar{b}_2$. Find $[\bar{x}]_{\mathcal{C}}$.

SOLUTION:

We have
$$[ar{x}]_{\mathcal{B}} = \left[egin{array}{c} 3 \ 1 \end{array}
ight]$$
 and

$$[ar{b}_1]_{\mathfrak{C}} = \left[egin{array}{c} 4 \ 1 \end{array}
ight], \quad [ar{b}_2]_{\mathfrak{C}} = \left[egin{array}{c} -6 \ 1 \end{array}
ight],$$

therefore
$$P_{\mathcal{C}\longleftarrow\mathcal{B}}=\begin{bmatrix}4&-6\\1&1\end{bmatrix}$$
, hence

$$[ar{x}]_{\mathfrak{C}} = \left[egin{array}{c} 4 & -6 \ 1 & 1 \end{array}
ight] \left[egin{array}{c} 3 \ 1 \end{array}
ight] = \left[egin{array}{c} 6 \ 4 \end{array}
ight].$$

Let

$$\mathcal{B} = \left\{ egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}, \ egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix}, \ egin{bmatrix} 0 \ 1 \ 1 \end{bmatrix}
ight\}$$

and \mathcal{E} be the standard basis of \mathbb{R}^3 . Let also

$$[ar{x}]_{\mathcal{E}} = egin{bmatrix} -4 \ 3 \ -5 \end{bmatrix}.$$

Find $[\bar{x}]_{\mathcal{B}}$.

SOLUTION:

We have

$$egin{aligned} P \ arepsilon & egin{aligned} 1 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{aligned} \end{aligned},$$

therefore

$$egin{bmatrix} -4 \ 3 \ -5 \end{bmatrix} = egin{bmatrix} 1 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{bmatrix} [ar{x}]_{\mathcal{B}},$$

SO

$$[ar{x}]_{\mathcal{B}} = egin{bmatrix} 1 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{bmatrix}^{-1} egin{bmatrix} -4 \ 3 \ -5 \end{bmatrix} = egin{bmatrix} 2 \ -6 \ 1 \end{bmatrix}.$$

DEFINITION:

Let V be a vector space and B be a basis of V. The <u>dimension</u> of V is a number of vectors in B.

EXAMPLE:

1. Since

$$ar{e}_1 = egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix}, \; ar{e}_2 = egin{bmatrix} 0 \ 1 \ dots \ 0 \end{bmatrix}, \ldots, \; ar{e}_n = egin{bmatrix} 0 \ 0 \ dots \ 1 \end{bmatrix}$$

is the basis for \mathbb{R}^n , we get dim $\mathbb{R}^n = n$.

2. Since

$$ar{e}_1=1,\ ar{e}_2=t,\ ar{e}_3=t^2,\ldots,\ ar{e}_{n+1}=t^n$$
 is the basis for $P^n,$ we get dim $P^n=n+1.$

WARNING:

n-dimensional space $\neq R^n$

EXAMPLE:

Vectors

$$\left[egin{array}{c}1\0\0\0\end{array}
ight], \quad \left[egin{array}{c}0\1\0\0\end{array}
ight], \quad \left[egin{array}{c}0\0\1\0\end{array}
ight]$$

span the 3-dimensional space, since there are 3 pivots. But they do not span R^3 , because they have 4 coordinates.

Find the dimension of the subspace

$$H = \left\{egin{bmatrix} a-4b+c\ 2a-c+3d\ 2b-c+d\ b+3d \end{bmatrix}: a,b,c,d\in R
ight\}$$

SOLUTION:

We have

$$\left[egin{array}{c} a-4b+c\ 2a-c+3d\ 2b-c+2d\ b+3d \end{array}
ight]$$

$$=aegin{bmatrix}1\2\0\0\end{bmatrix}+begin{bmatrix}-4\0\2\1\end{bmatrix}+cegin{bmatrix}1\-1\-1\0\end{bmatrix}+degin{bmatrix}0\3\2\3\end{bmatrix}$$

Using elementary row operations, we get

$$egin{bmatrix} 1 & -4 & 1 & 0 \ 2 & 0 & -1 & 3 \ 0 & 2 & -1 & 2 \ 0 & 1 & 0 & 3 \ \end{bmatrix} \sim egin{bmatrix} 1 & -4 & 1 & 0 \ 0 & 8 & -3 & 3 \ 0 & 0 & 1 & -5 \ 0 & 0 & 0 & 1 \ \end{bmatrix},$$

therefore dim H=4.

THEOREM:

- (a) The dimension of Nul A is the number of free variables in the equation $A\bar{x} = \bar{0}$.
- (b) The dimension of Col A is the number of pivot columns in A.

Find the dimensions of the null space and the column space of

$$A = egin{bmatrix} 1 & 2 & 0 & -1 \ 2 & 0 & 1 & -2 \ 4 & 4 & -1 & -4 \ 7 & 6 & 2 & -7 \end{bmatrix}$$

SOLUTION:

Using elementary row operations, we get

$$egin{bmatrix} 1 & 2 & 0 & -1 \ 2 & 0 & 1 & -2 \ 4 & 4 & -1 & -4 \ 7 & 6 & 2 & -7 \end{bmatrix} \sim egin{bmatrix} 1 & 2 & 0 & -1 \ 0 & 4 & -1 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}.$$

There is one free variable x_4 . Hence dim Nul A=1. Also, dim Col A=3 because A has 3 pivots.

DEFINITION:

The $\underline{\text{rank}}$ of A is the dimension of the column space of A.

EXAMPLE:

Since

$$A = egin{bmatrix} 1 & 2 & 0 & -1 \ 2 & 0 & 1 & -2 \ 4 & 4 & -1 & -4 \ 7 & 6 & 2 & -7 \end{bmatrix} \sim egin{bmatrix} 1 & 2 & 0 & -1 \ 0 & 4 & -1 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

we have

rank
$$A=3$$
.

THEOREM (THE RANK THEOREM):

- (a) The dimensions of the column space and the row space of an $m \times n$ matrix A are equal.
- (b) This common dimension, the rank of A, also equals the number of pivot positions in A and satisfies the equation

rank $A + \dim \text{Nul } A = n$.

EXAMPLE:

Let

$$A = \left[egin{array}{cccc} -1 & 4 & -2 & 0 & -3 \ 2 & 1 & 1 & -1 & 0 \ 0 & 9 & -3 & -1 & -6 \ \end{array}
ight]$$

Using elementary row operations, we get

$$\begin{bmatrix} -1 & 4 & -2 & 0 & -3 \\ 2 & 1 & 1 & -1 & 0 \\ 0 & 9 & -3 & -1 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & -4 & 2 & 0 & 3 \\ 0 & 9 & -3 & -1 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) Since there are 2 pivots, we have $\dim \text{Row } A = \dim \text{Col } A = 2.$
- (b) Since there are 3 free variables, dim Nul A = 3.

We see that 2 + 3 = 5 (# of columns).

An eigenvector of an $n \times n$ matrix A is a nonzero vector \bar{x} such that

$$A\bar{x} = \lambda \bar{x} \tag{*}$$

for some scalar λ . A scalar λ is called an eigenvalue of A.

DEFINITION:

Let λ be an eigenvalue of A. The set of all solutions of (*) is called the <u>eigenspace</u> of A corresponding to λ .

REMARK:

To find eigenvalues of A, we should solve the following characteristic equation

$$\det(A - \lambda I) = 0,$$

where I is the identity matrix.

Let

$$A = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ \vdots & \vdots & & \vdots \ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

then $\det(A - \lambda I) =$

is called the characteristic polynomial of A and

$$\det(A - \lambda I) = 0,$$

is called the characteristic equation of A.

PROBLEM:

Let

$$A = \left[egin{array}{cc} 5 & 0 \ 2 & 1 \end{array}
ight].$$

Find all eigenvalues.

SOLUTION:

We first solve the following equation:

$$\det(A-\lambda I) = egin{array}{c|c} 5-\lambda & 0 \ 2 & 1-\lambda \end{array} = 0.$$

Expanding this determinant, we obtain

$$(5-\lambda)(1-\lambda)=0,$$

hence

$$\lambda_1=1, \quad \lambda_2=5$$

are eigenvalues of A.

PROBLEM:

Let

$$A = \left[egin{array}{ccc} 4 & -1 & 6 \ 2 & 1 & 6 \ 2 & -1 & 8 \end{array}
ight].$$

An eigenvalue λ is 2. Find a basis for the corresponding eigenspace.

SOLUTION:

We use row operations:

$$egin{bmatrix} 4-\lambda & -1 & 6 & 0 \ 2 & 1-\lambda & 6 & 0 \ 2 & -1 & 8-\lambda & 0 \end{bmatrix} \ = egin{bmatrix} 2 & -1 & 6 & 0 \ 2 & -1 & 6 & 0 \ 2 & -1 & 6 & 0 \ 2 & -1 & 6 & 0 \end{bmatrix} \sim egin{bmatrix} 2 & -1 & 6 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix},$$

hence

$$2x_1 - x_2 + 6x_3 = 0 \implies x_1 = \frac{1}{2}x_2 - 3x_3$$

We get

$$ar{x} = egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = egin{bmatrix} rac{1}{2}x_2 - 3x_3 \ rac{x_2}{x_3} \end{bmatrix}$$

is the eigenvector of A, corresponding to $\lambda = 2$.

To find a basis for the eigenspace corresponding to $\lambda = 2$, we note that

$$ar{x} = egin{bmatrix} rac{1}{2}x_2 - 3x_3 \ x_2 \ x_3 \end{bmatrix} = x_2 egin{bmatrix} 1/2 \ 1 \ 0 \end{bmatrix} + x_3 egin{bmatrix} -3 \ 0 \ 1 \end{bmatrix}$$

therefore the 2-dimensional eigenspace corresponding to $\lambda=2$ is

$$H = \left\{ egin{aligned} t_1 egin{bmatrix} 1/2 \ 1 \ 0 \end{bmatrix} + t_2 egin{bmatrix} -3 \ 0 \ 1 \end{bmatrix} : t_1, \ t_2 \in R
ight\} \end{aligned}$$

and

$$\left\{ egin{bmatrix} 1/2 \ 1 \ 0 \end{bmatrix}, \ egin{bmatrix} -3 \ 0 \ 1 \end{bmatrix}
ight\}$$

is the basis for H.

A square matrix A is said to be <u>diagon-alizable</u> if A is <u>similar</u> to a diagonal matrix, that is

$$A = PDP^{-1}$$

for some invertible matrix P and some diagonal matrix D.

EXAMPLE:

Matrices

$$A = \left[egin{array}{cc} 7 & 4 \ -3 & -1 \end{array}
ight] \ ext{and} \ D = \left[egin{array}{cc} 1 & 0 \ 0 & 5 \end{array}
ight]$$

are similar, since

$$A = PDP^{-1}.$$

where

$$P = \left[egin{array}{cc} -2 & -2 \ 3 & 1 \end{array}
ight].$$

Also, A is diagonalizable.

<u>THEOREM</u> (The Diagonalization Theorem):

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case:

- (a) The columns of P are n linearly independent eigenvectors of A;
- (b) The diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

EXAMPLE:

One can check that $\lambda = 1, 5$ are eigenvalues of A and

$$\left[egin{array}{c} -2 \ 3 \end{array}
ight] \quad \left[egin{array}{c} -2 \ 1 \end{array}
ight]$$

are corresponding eigenvectors. Therefore

$$D = \left[egin{array}{c} 1 & 0 \ 0 & 5 \end{array}
ight] \ ext{and} \ P = \left[egin{array}{c} -2 & -2 \ 3 & 1 \end{array}
ight].$$

EXAMPLE:

Determine if the following matrix is diagonalizable:

$$A = \left[egin{array}{ccc} 1 & 3 & 3 \ -3 & -5 & -3 \ 3 & 3 & 1 \end{array}
ight]$$

SOLUTION:

We first solve the following equation:

$$\det(A{-}\lambda I) = egin{array}{c|c} 1-\lambda & 3 & 3 \ -3 & -5-\lambda & -3 \ 3 & 3 & 1-\lambda \ \end{array} = 0.$$

Expanding this determinant, we obtain

$$-\lambda^3 - 3\lambda^2 + 4 = (1 - \lambda)(\lambda + 2)^2 = 0,$$

hence

$$\lambda_1 = 1, \quad \lambda_2 = -2$$

are eigenvalues of A, so

$$D = egin{bmatrix} 1 & 0 & 0 \ 0 & -2 & 0 \ 0 & 0 & -2 \end{bmatrix}$$

One can show that

$$ext{Basis for } \lambda_1 = 1: egin{bmatrix} 1 \ -1 \ 1 \end{bmatrix}$$

Basis for
$$\lambda_2 = -2: \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

therefore

$$P = \left[egin{array}{ccc} 1 & -1 & -1 \ -1 & 1 & 0 \ 1 & 0 & 1 \end{array}
ight]$$

If \bar{u} and \bar{v} are vectors in R^n , then $\bar{u}^T\bar{v}$ is called the inner product (or dot product) of \bar{u} and \bar{v} and written as

$$ar{u}\cdotar{v}$$

REMARK:

In other words, if

$$ar{u} = egin{bmatrix} u_1 \ dots \ u_n \end{bmatrix} & ext{and} & ar{v} = egin{bmatrix} v_1 \ dots \ v_n \end{bmatrix},$$

then

$$egin{aligned} ar{u} \cdot ar{v} &= ar{u}^T ar{v} = [u_1 \ \dots \ u_n] egin{bmatrix} v_1 \ dots \ v_n \end{bmatrix} \ &= u_1 v_1 + \dots + u_n v_n. \end{aligned}$$

EXAMPLE:

Let

$$ar{u} = egin{bmatrix} 2 \ -5 \ -1 \end{bmatrix} \quad ext{and} \quad ar{v} = egin{bmatrix} 3 \ 2 \ -3 \end{bmatrix}.$$

Find $\bar{u} \cdot \bar{v}$.

SOLUTION:

We have

$$\bar{u} \cdot \bar{v} = 2 \cdot 3 + (-5) \cdot 2 + (-1)(-3) = -1.$$

THEOREM:

Let \bar{u} , \bar{v} , and \bar{w} be vectors in \mathbb{R}^n , and let c be a scalar. Then

(a)
$$\bar{u} \cdot \bar{v} = \bar{v} \cdot \bar{u}$$

(b)
$$(\bar{u} + \bar{v}) \cdot \bar{w} = \bar{u} \cdot \bar{w} + \bar{v} \cdot \bar{w}$$

(c)
$$(c\bar{u}) \cdot \bar{v} = c(\bar{u} \cdot \bar{v}) = \bar{u} \cdot (c\bar{v})$$

(d)
$$\bar{u} \cdot \bar{u} \geq 0$$

(d')
$$\bar{u} \cdot \bar{u} = 0$$
 if and only if $\bar{u} = 0$

Let $\bar{v} = (v_1, \dots, v_n)$ be a vector from R^n . Then the <u>length</u> (or <u>norm</u>) of \bar{v} is the nonnegative scalar $||\bar{v}||$ defined by

$$\|ar{v}\| = \sqrt{ar{v} \cdot ar{v}} = \sqrt{v_1^2 + \ldots + v_n^2}.$$

EXAMPLE:

The length of the vector $ar{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ is

$$\|\bar{u}\| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5.$$

PROPERTY:

Let c be a scalar. Then

$$\|c\bar{v}\|=|c|\|\bar{v}\|.$$

A vector whose length is 1 is called a unit vector.

EXAMPLE:

Let $\bar{v} = (1, -2, 2, 0)$. Find the unit vector in the same direction as \bar{v} .

SOLUTION:

We have

$$\|\bar{v}\| = \sqrt{1^2 + (-2)^2 + 2^2 + 0^2} = \sqrt{9} = 3.$$

Put $\bar{u} = \frac{1}{\|\bar{v}\|}\bar{v}$. It is easy to show that \bar{u} is the unit vector and vectors \bar{v} and \bar{u} have the same direction. Therefore

$$ar{u} = rac{1}{\|ar{v}\|}ar{v} = rac{1}{3}egin{bmatrix} 1 \ -2 \ 2 \ 0 \end{bmatrix} = egin{bmatrix} 1/3 \ -2/3 \ 2/3 \ 0 \end{bmatrix}.$$

Let \bar{u} and \bar{v} be from R^n . Then the <u>distance</u> between \bar{u} and \bar{v} , written as

$$\mathrm{dist}\ (\bar{u},\bar{v}),$$

is the length of the vector $\bar{u} - \bar{v}$. That is,

$$\mathrm{dist}\ (\bar{u},\bar{v}) = \|\bar{u} - \bar{v}\|.$$

EXAMPLE:

Let $\bar{u} = (1, 2, 3)$ and $\bar{v} = (-1, 5, -4)$. Then

$$\bar{u} - \bar{v} = (1, 2, 3) - (-1, 5, -4) = (2, -3, 7),$$
 therefore

dist
$$(\bar{u}, \bar{v}) = \sqrt{2^2 + (-3)^2 + 7^2} = \sqrt{62}$$
.

Two vectors \bar{u} and \bar{v} in \mathbb{R}^n are orthogonal (perpendicular) if

$$\bar{u}\cdot\bar{v}=0.$$

EXAMPLE:

Vectors $\bar{u} = (4, 12)$ and $\bar{v} = (9, -3)$ are orthogonal, since

$$\bar{u}\cdot\bar{v}=4\cdot9+12\cdot(-3)=0.$$

THEOREM:

Let \bar{u} and \bar{v} be from R^2 or R^3 and let θ be the angle between them. Then

$$\cos\theta = \frac{\bar{u}\cdot\bar{v}}{\|\bar{u}\|\|\bar{v}\|}$$

EXAMPLE:

To find the angle between vectors

$$ar{u} = egin{bmatrix} 5 \ -3 \ 1 \end{bmatrix} \quad ext{and} \quad ar{v} = egin{bmatrix} 6 \ 9 \ -3 \end{bmatrix},$$

we note that $\cos heta = rac{ar{u} \cdot ar{v}}{\|ar{u}\| \|ar{v}\|}^- =$

$$\frac{5 \cdot 6 + (-3) \cdot 9 + 1 \cdot (-3)}{\sqrt{5^2 + (-3)^2 + 1^2} \sqrt{6^2 + 9^2 + (-3)^2}} = 0,$$

therefore
$$\theta = \frac{\pi}{2} = 90^{\circ}$$
.