$$\begin{cases} x_1 + 3x_2 + 4x_3 = 7\\ 3x_1 + 9x_2 + 7x_3 = 6\\ & \downarrow \\ \begin{bmatrix} 1 & 3 & 4 & 7\\ 3 & 9 & 7 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 4 & 7\\ 0 & 0 & -5 & -15 \end{bmatrix} \\ \sim \begin{bmatrix} 1 & 3 & 4 & 7\\ 0 & 0 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 0 & -5\\ 0 & 0 & 1 & 3 \end{bmatrix} \\ & \downarrow \\ \begin{cases} x_1 + 3x_2 &= -5\\ & x_3 = 3 \\ & \downarrow \\ x_1 = -5 - 3x_2 \\ & x_3 = 3\\ & x_2 \text{ is free} \end{cases}$$

$$x_{1} \begin{bmatrix} 1\\3 \end{bmatrix} + x_{2} \begin{bmatrix} 3\\9 \end{bmatrix} + x_{3} \begin{bmatrix} 4\\7 \end{bmatrix} = \begin{bmatrix} 7\\6 \end{bmatrix}$$

Let
 $\bar{v}_{1} = \begin{bmatrix} 1\\3 \end{bmatrix}, \quad \bar{v}_{2} = \begin{bmatrix} 3\\9 \end{bmatrix}, \quad \bar{v}_{3} = \begin{bmatrix} 4\\7 \end{bmatrix}.$
(a) Does $\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\}$ span R^{2} ?
(b) Does $\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\}$ span R^{3} ?
(c) Is $\begin{bmatrix} 7\\6 \end{bmatrix}$ in Span $(\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\})$?
(d) Is $\begin{bmatrix} 7\\32 \end{bmatrix}$ in Span $(\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\})$?
(e) Does
 $x_{1}\bar{v}_{1} + x_{2}\bar{v}_{2} + x_{3}\bar{v}_{3} = \begin{bmatrix} 7\\6 \end{bmatrix}$

$$x_1ar{v}_1+x_2ar{v}_2+x_3ar{v}_3=egin{bmatrix}7\32\end{bmatrix}$$

have a solution?

THEOREM:

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent:

1. For each \overline{b} in \mathbb{R}^m , the equation $A\overline{x} = \overline{b}$ has a solution.

2. Each \overline{b} in \mathbb{R}^m is a linear combination of the columns of A.

3. The columns of A span \mathbb{R}^m .

4. A has a pivot position in every row, i.e. A has m pivot positions.

Row-Vector Rule for Computing $A\bar{x}$:

If a product $A\bar{x}$ is defined, then the *i*th entry in $A\bar{x}$ is the sum of the products of corresponding entries from row *i* of *A* and from the vector \bar{x} .

$$\underbrace{\text{EXAMPLE}}_{1.} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 7 \end{bmatrix} \\
= \begin{bmatrix} 1 \cdot 4 + 2 \cdot 3 + (-1) \cdot 7 \\ 0 \cdot 4 + (-5) \cdot 3 + 3 \cdot 7 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

$$2. \begin{bmatrix} 2 & -3 & -9 & 11 \\ -3 & 0 & 6 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$= egin{bmatrix} 2x_1 - 3x_2 - 9x_3 + 11x_4 \ -3x_1 + 6x_3 - 4x_4 \end{bmatrix}$$

3.
$$\begin{bmatrix} 2 & -3 & -9 & 11 \\ -3 & 0 & 6 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =???$$

PROBLEM:

1. Write the general solution of the system

$$\left\{egin{array}{c} x_1 + 3x_2 + 4x_3 = 7 \ 3x_1 + 9x_2 + 7x_3 = 6 \end{array}
ight.$$

in a vector form.

2. Solve the following system

$$\left\{egin{array}{c} x_1 + 3x_2 + 4x_3 = 0 \ 3x_1 + 9x_2 + 7x_3 = 0 \end{array}
ight.$$

and write the general solution in a vector form.

THEOREM:

Suppose the equation $A\bar{x} = \bar{b}$ is consistent for some given \bar{b} , and let \bar{p} be a solution. Then the solution set of $A\bar{x} = \bar{b}$ is the set of all vectors of the form

$$ar{w}=ar{p}+ar{v}_h,$$

where \bar{v}_h is any solution of the homogeneous equation $A\bar{x} = \bar{0}$.

PROBLEM:

Let

$$A = \begin{bmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{bmatrix} \quad \text{and} \quad \overline{b} = \begin{bmatrix} 7 \\ -1 \\ -4 \end{bmatrix}$$

1. Is \overline{b} in the subset of R^3 spanned by the columns of A?

2. Do columns of A span R^3 ?

3. Describe all solutions of $A\bar{x} = \bar{b}$.