ELEMENTARY ROW OPERATIONS:

1. Replace one row by the sum of itself and a multiple of another row.

2. Interchange two rows.

3. Multiply all entries in a row by a nonzero constant.

DEFINITION:

A matrix with only one column is called a <u>column vector</u>, or simply a <u>vector</u>.

DEFINITION:

The vector \bar{y} defined by

$$ar{y}=c_1ar{v_1}+\ldots+c_par{v_p},$$

where $\bar{v_1}, \ldots, \bar{v_p}$ are vectors and c_1, \ldots, c_p are scalars, is called a <u>linear combination</u> of vectors $\bar{v_1}, \ldots, \bar{v_p}$.

DEFINITION:

The set of all combinations of $\bar{v_1}, \ldots, \bar{v_p}$ is denoted by $\text{Span}\{\bar{v_1}, \ldots, \bar{v_p}\}$ and is called the subset of R^n spanned (or generated) by $\bar{v_1}, \ldots, \bar{v_p}$.

$$x_1 egin{bmatrix} 1 \ 2 \ 3 \end{bmatrix} + x_2 egin{bmatrix} -2 \ -4 \ -6 \end{bmatrix} + x_3 egin{bmatrix} 3 \ 9 \ 4 \end{bmatrix} + x_4 egin{bmatrix} 17 \ 46 \ 31 \end{bmatrix} = egin{bmatrix} 18 \ 57 \ 19 \end{bmatrix}$$

THEOREM:

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent:

1. For each \overline{b} in \mathbb{R}^m , the equation $A\overline{x} = \overline{b}$ has a solution.

2. Each \overline{b} in \mathbb{R}^m is a linear combination of the columns of A.

3. The columns of A span \mathbb{R}^m .

4. A has a pivot position in every row, i.e. A has m pivot positions.

PROBLEMS: 1. $\bar{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \bar{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$ (a) Does $\{\bar{v}_1, \bar{v}_2\}$ span R^2 ? (b) Does $\{\bar{v}_1, \bar{v}_2\}$ span R^3 ? (c) Is $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ in Span $(\{\bar{v}_1, \bar{v}_2\})$? (d) Does $x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ have a solution?

2.

$$\bar{v}_{1} = \begin{bmatrix} 1\\4 \end{bmatrix}, \quad \bar{v}_{2} = \begin{bmatrix} 2\\7 \end{bmatrix}.$$
(a) Does { \bar{v}_{1}, \bar{v}_{2} } span R^{2} ?
(b) Does { \bar{v}_{1}, \bar{v}_{2} } span R^{3} ?
(c) Is $\begin{bmatrix} 3\\1 \end{bmatrix}$ in Span ({ \bar{v}_{1}, \bar{v}_{2} })?
(d) Does

$$x_{1} \begin{bmatrix} 1\\4 \end{bmatrix} + x_{2} \begin{bmatrix} 2\\7 \end{bmatrix} = \begin{bmatrix} 3\\1 \end{bmatrix}$$
have a solution?
(e) Is $\begin{bmatrix} 100\\165889 \end{bmatrix}$ in Span ({ \bar{v}_{1}, \bar{v}_{2} })?
(f) Does

$$x_{1} \begin{bmatrix} 1\\4 \end{bmatrix} + x_{2} \begin{bmatrix} 2\\7 \end{bmatrix} = \begin{bmatrix} 100\\165889 \end{bmatrix}$$

have a solution?

3.

$$\bar{v}_1 = \begin{bmatrix} 1\\2 \end{bmatrix}, \quad \bar{v}_2 = \begin{bmatrix} 5\\10 \end{bmatrix}, \quad \bar{v}_3 = \begin{bmatrix} -3\\-6 \end{bmatrix}$$

(a) Does $\{\bar{v}_1, \bar{v}_2, \bar{v}_3\}$ span R^2 ?
(b) Does $\{\bar{v}_1, \bar{v}_2, \bar{v}_3\}$ span R^3 ?
(c) Is $\begin{bmatrix} -4\\-8 \end{bmatrix}$ in Span $(\{\bar{v}_1, \bar{v}_2, \bar{v}_3\})$?
(d) Is $\begin{bmatrix} 5\\7 \end{bmatrix}$ in Span $(\{\bar{v}_1, \bar{v}_2, \bar{v}_3\})$?
(e) Does
 $x_1 \begin{bmatrix} 1\\2 \end{bmatrix} + x_2 \begin{bmatrix} 5\\10 \end{bmatrix} + x_3 \begin{bmatrix} -3\\-6 \end{bmatrix} = \begin{bmatrix} -4\\-8 \end{bmatrix}$
have a solution?
(f) Does
 $x_1 \begin{bmatrix} 1\\2 \end{bmatrix} + x_2 \begin{bmatrix} 5\\10 \end{bmatrix} + x_3 \begin{bmatrix} -3\\-6 \end{bmatrix} = \begin{bmatrix} 5\\7 \end{bmatrix}$
have a solution?