2.31 If \(a_1, a_2, \ldots, a_{t-1}, a_t \) are elements in a group \(G \), prove that

\[
(a_1a_2 \ldots a_{t-1}a_t)^{-1} = a_t^{-1}a_{t-1}^{-1} \ldots a_2^{-1}a_1^{-1}.
\]

Solution:

By (v) of Theorem 3 we have

\[
(a_1a_2 \ldots a_{t-1}a_t)^{-1} = a_t^{-1}(a_1a_2 \ldots a_{t-1})^{-1} = a_t^{-1}a_{t-1}^{-1}(a_1a_2 \ldots a_{t-2})^{-1} = \ldots = a_t^{-1}a_{t-1}^{-1} \ldots a_2^{-1}a_1^{-1}.
\]

2.34 (i) How many elements of order 2 are there in \(S_5 \) and in \(S_6 \)?

(ii) How many elements of order 2 are there in \(S_n \)?

Answer:

Case A: Let \(n = 2k \). Then there are

\[
\binom{n}{2} + \frac{n}{2} \binom{n-2}{2} + \frac{n}{2} \binom{n-2}{2} \binom{n-4}{2} + \ldots + \frac{n}{2} \binom{n-2}{2} \ldots \binom{2}{2}
\]

elements of order 2 in \(S_n \).

Case B: Let \(n = 2k + 1 \). Then there are

\[
\binom{n}{2} + \frac{n}{2} \binom{n-2}{2} + \frac{n}{2} \binom{n-2}{2} \binom{n-4}{2} + \ldots + \frac{n}{2} \binom{n-2}{2} \ldots \binom{3}{2}
\]

elements of order 2 in \(S_n \).

In particularly, it follows that \(S_4 \) has

\[
\binom{4}{2} + \frac{4}{2} \binom{2}{2} = 9
\]

elements of order 2 and \(S_5 \) has

\[
\binom{5}{2} + \frac{5}{2} \binom{3}{2} = 25
\]

elements of order 2.

2.35 If \(G \) is a group, prove that the only element \(g \in G \) with \(g^2 = g \) is 1.

Solution: We rewrite \(g^2 = g \) as \(g \cdot g = g \). Multiplying both sides by \(g^{-1} \), we get

\[
(g \cdot g)g^{-1} = g \cdot g^{-1} \implies g(g \cdot g^{-1}) = g \cdot g^{-1} \implies g \cdot 1 = 1 \implies g = 1.
\]
Let \(H \) be a set containing an element \(e \), and assume that there is an associative operation * on \(H \) satisfying:

1. \(e * x = x \) for all \(x \in H \);
2. for every \(x \in H \), there is \(x' \in H \) with \(x' * x = e \).

(i) Prove that if \(h \in H \) satisfies \(h * h = h \), then \(h = e \).

(ii) For all \(x \in H \), prove that \(x * x' = e \).

(iii) For all \(x \in H \), prove that \(x * e = x \).

(iv) Prove that if \(e' \in H \) satisfies \(e' * x = x \) for all \(x \in H \), then \(e' = e \).

(v) Let \(x \in H \). Prove that if \(x'' \in H \) satisfies \(x'' * x = e \), then \(x'' = x' \).

(vi) Prove that \(H \) is a group.

Solution:

(i) Multiplying both sides of \(h * h = h \) by \(h^{-1} \), we get

\[
h^{-1} * (h * h) = h^{-1} * h \implies (h^{-1} * h) * h = h^{-1} * h \implies e * h = e \implies h = e.
\]

(ii) Consider \((x * x') * (x * x')\). We have

\[
(x * x') * (x * x') = x * [x' * (x * x')] = x * [(x' * x) * x'] = x * (e * x') = x * x'.
\]

So, \((x * x') * (x * x') = x * x'\), and the result follows by (i).

(iii) We have

\[
x * (x' * x) = x * e.
\]

On the other hand, by (ii) we get

\[
(x * x') * x = e * x = x.
\]

Since \(x * (x' * x) = (x * x') * x \) by the associative law, the result follows.

(iv) Since \(e' * x = x \) for all \(x \in H \), putting \(x = e \), we have

\[
e' * e = e.
\]

On the other hand, by (iii) we get

\[
e' * e = e',
\]

and the result follows.

(v) We have

\[
(x' * x) * x'' = e * x'' = x''.
\]

On the other hand, by (ii) and (iii) we get

\[
x' * (x * x'') = x' * e = x'.
\]

Since \(x' * (x * x'') = (x' * x) * x'' \) by the associative law, the result follows.

(vi) Since there is an associative operation *, \(e * x = x * e \) and \(x' * x = x * x' \) for any \(x \in H \), it follows that \(H \) is a group.
2.37 Let y be a group element of order m; if $m = tp$ for some prime p, prove that y^t has order p.

Solution:
Let g be the order of y^t. It follows that $(y^t)^g = 1$, so $y^{tg} = 1$. Note that $g \geq p$, because otherwise

$$g < p \implies tg < tp \implies tg < m.$$

So, $y^{tg} = 1$ and $tg < m$, which is impossible, since m is the smallest positive number with $y^m = 1$. Finally, we note that

$$(y^t)^p = y^{tp} = y^m = 1.$$

So, p is the smallest power of y^t which gives 1, i.e. $g = p$.

Remark:
Note that the solution above does not use the fact that p is a prime. In other words, problem 2.37 is true for any positive integer p.

2.38 Let G be a group and let $a \in G$ have order p^k for some prime p, where $k \geq 1$. Prove that if there is $x \in G$ with $x^p = a$, then the order of x is p^2k.

Solution:
Let g be the order of x. We first note that

$$x^{p^2k} = (x^p)^{pk} = a^{pk} = 1,$$

therefore

$$g \leq p^2k. \quad (\ast)$$

We now show that p^2k is the smallest power which gives 1. In fact, since $x^g = 1$, we get

$$(x^g)^p = 1 \implies (x^p)^g = 1 \implies a^g = 1,$$

therefore by Theorem 7 we obtain $pk | g$, hence

$$g = pkd \quad (\ast\ast)$$

for some integer d. So,

$$1 = x^g = x^{pkd} = (x^p)^{kd} = a^{kd}.$$

But pk is the order of a, therefore $kd \geq pk$, so $d \geq p$. This and $(\ast\ast)$ give

$$g = pkd \geq p^2k. \quad (\ast\ast\ast)$$

From (\ast) and $(\ast\ast\ast)$ follows $g = p^2k$.

2.39 Let $G = GL(2, \mathbb{Q})$, and let

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}.$$

Show that $A^4 = E = B^6$, but that $(AB)^n \neq E$ for all $n > 0$.

Solution:
We have

$$A^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \quad A^4 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$
and
\[
B^2 = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}, \quad B^4 = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix},
\]
\[
B^6 = B^4B^2 = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.
\]

Finally, we show by induction that
\[
(AB)^n = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}.
\]

In fact, for \(n = 1 \) this is true, since
\[
AB = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}.
\]

Suppose this is true for some \(n = k \geq 1 \), that is
\[
(AB)^k = \begin{bmatrix} 1 & -k \\ 0 & 1 \end{bmatrix}.
\]

We prove that
\[
(AB)^{k+1} = \begin{bmatrix} 1 & -(k+1) \\ 0 & 1 \end{bmatrix}.
\]

We have
\[
(AB)^{k+1} = (AB)^k(AB) = \begin{bmatrix} 1 & -k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -(k+1) \\ 0 & 1 \end{bmatrix}.
\]

2.40(i) Prove, by induction on \(n \geq 1 \), that
\[
\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^n = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}
\]

Solution:

By \(n = 1 \) this is obviously true. Suppose this is true for some \(n = k \geq 1 \), that is
\[
\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^k = \begin{bmatrix} \cos k\theta & -\sin k\theta \\ \sin k\theta & \cos k\theta \end{bmatrix}.
\]

We prove that
\[
\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^{k+1} = \begin{bmatrix} \cos(k+1)\theta & -\sin(k+1)\theta \\ \sin(k+1)\theta & \cos(k+1)\theta \end{bmatrix}.
\]
We have
\[
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}^{k+1} = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}^k \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]
\[
= \begin{bmatrix}
\cos k\theta & -\sin k\theta \\
\sin k\theta & \cos k\theta
\end{bmatrix} \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]
\[
= \begin{bmatrix}
\cos k\theta \cos \theta - \sin k\theta \sin \theta & -\cos k\theta \sin \theta - \sin k\theta \cos \theta \\
\sin k\theta \cos \theta + \cos k\theta \sin \theta & -\sin k\theta \sin \theta + \cos k\theta \cos \theta
\end{bmatrix}.
\]

It is known that
\[
\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha
\]
and
\[
\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta,
\]
therefore
\[
\cos k\theta \cos \theta - \sin k\theta \sin \theta = \cos(k\theta + \theta) = \cos(k + 1)\theta,
\]
\[
\sin k\theta \cos \theta + \cos k\theta \sin \theta = \sin(k\theta + \theta) = \sin(k + 1)\theta,
\]
and the result follows.

2.41 If \(G\) is a group in which \(x^2 = 1\) for every \(x \in G\), prove that \(G\) must be abelian.

Solution:
We have \(x \cdot x = 1\) for every \(x \in G\). This, in particularly, gives
\[
(ab)(ab) = 1
\]
for every \(a, b \in G\). Multiplying both sides by \(ba\), we get
\[
ababba = ba \implies aba1a = ba \implies abaa = ba \implies ab1 = ba \implies ab = ba,
\]
and the result follows.

2.42 If \(G\) is a group with an even number of elements, prove that the number of elements in \(G\) of order 2 is odd. In particular, \(G\) must contain an element of order 2.

Solution:
Let us split \(G\) into three subsets:
\[
G = \{e\} \cup \{\text{elements of order 2}\} \cup \{\text{elements of order > 2}\}
\]

Note that
\[
x^2 = 1 \iff x = x^{-1}.
\]
This means that an element x coincides with its inverse if and only if $x^2 = 1$. In other words, an element x coincides with its inverse if and only if x has order 2 or $x = 1$. From this it follows that for any element $x \in S_2$ we have $x \neq x^{-1}$. Moreover, it is easy to see that

$$x_1 \neq x_2 \iff x_1^{-1} \neq x_2^{-1}$$

and

$$\text{order of } x = \text{order of } x^{-1}.$$

The information above immediately implies that S_2 has even number of elements. Since $|G|$ is even and $|\{e\}|$ is odd, it follows that S_1 has odd number of elements.

2.44 The stochastic group $\Sigma(2, \mathbb{R})$ consists of all those matrices in $\text{GL}(2, \mathbb{R})$ whose column sums are 1; that is, $\Sigma(2, \mathbb{R})$ consists of all the nonsingular matrices

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

with $a + b = 1 = c + d$. Prove that the product of two stochastic matrices is again stochastic, and that the inverse of a stochastic matrix is stochastic.

Solution:
We have

$$\begin{bmatrix} a_1 & c_1 \\ b_1 & d_1 \end{bmatrix} \begin{bmatrix} a_2 & c_2 \\ b_2 & d_2 \end{bmatrix} = \begin{bmatrix} a_1a_2 + c_1b_2 & a_1c_2 + c_1d_2 \\ b_1a_2 + d_1b_2 & b_1c_2 + d_1d_2 \end{bmatrix},$$

which is stochastic, since

$$a_1a_2 + c_1b_2 + b_1a_2 + d_1b_2 = a_2(a_1 + b_1) + b_2(c_1 + d_1) = a_2 + b_2 = 1$$

and

$$a_1c_2 + c_1d_2 + b_1c_2 + d_1d_2 = c_2(a_1 + b_1) + d_2(c_1 + d_1) = c_2 + d_2 = 1.$$

Also,

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix} = \begin{bmatrix} \frac{d}{ad - bc} & -\frac{c}{ad - bc} \\ -\frac{b}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix}$$

which is stochastic, since

$$\frac{d}{ad - bc} - \frac{b}{ad - bc} = \frac{d - b}{ad - bc} = \frac{d - b}{ad + bd - bd - bc} = \frac{d - b}{d(a + b) - b(d + c)} = \frac{d - b}{d - b} = 1$$

and

$$\frac{-c}{ad - bc} + \frac{a}{ad - bc} = \frac{a - c}{ad - bc} = \frac{a - c}{ad + ac - ac - bc} = \frac{a - c}{a(d + c) - c(a + b)} = \frac{a - c}{a - c} = 1.$$
2.45 (i) Define a special linear group by

$$SL(2, \mathbb{R}) = \{ A \in GL(2, \mathbb{R}) : \det(A) = 1 \}.$$

Prove that $SL(2, \mathbb{R})$ is a subgroup of $GL(2, \mathbb{R})$.

(ii) Prove that $GL(2, \mathbb{Q})$ is a subgroup of $GL(2, \mathbb{R})$.

Solution:

(i) We will use Theorem 4. In order to apply this Theorem we should check that $SL(2, \mathbb{R})$ is nonempty and that $M_1M_2^{-1} \in SL(2, \mathbb{R})$ whenever $M_1 \in SL(2, \mathbb{R})$ and $M_2 \in SL(2, \mathbb{R})$.

First of all note that $SL(2, \mathbb{R})$ is nonempty, since \[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} \in SL(2, \mathbb{R}).
\]

Let \[
M_1 = \begin{bmatrix}
a_1 & c_1 \\
b_1 & d_1
\end{bmatrix} \quad \text{and} \quad M_2 = \begin{bmatrix}
a_2 & c_2 \\
b_2 & d_2
\end{bmatrix}
\]
be from $SL(2, \mathbb{R})$. Then $\det(M_1M_2^{-1}) = 1$, since \[
\det(M_1M_2^{-1}) = \det(M_1)\det(M_2^{-1}) = \det(M_1)[\det(M_2)]^{-1} = 1 \cdot 1^{-1} = 1.
\]

Finally, \[
M_1M_2^{-1} = \begin{bmatrix}
a_1 & c_1 \\
b_1 & d_1
\end{bmatrix} \begin{bmatrix}
a_2 & c_2 \\
b_2 & d_2
\end{bmatrix}^{-1} = \begin{bmatrix}
a_1 & c_1 \\
b_1 & d_1
\end{bmatrix} \begin{bmatrix}
d_2 & -c_2 \\
a_2 & c_2
\end{bmatrix} = \begin{bmatrix}
da_1d_2 - c_1b_2 & \frac{-a_1c_2 + c_1a_2}{a_2d_2 - b_2c_2} \\
b_1d_2 - d_1b_2 & \frac{b_1c_2 - d_1a_2}{a_2d_2 - b_2c_2}
\end{bmatrix},
\]
which is equal to \[
\begin{bmatrix}
a_1 & c_1 \\
b_1 & d_1
\end{bmatrix} \begin{bmatrix}
d_2 & -c_2 \\
a_2 & c_2
\end{bmatrix} = \begin{bmatrix}
a_1d_2 - c_1b_2 & \frac{-a_1c_2 + c_1a_2}{a_2d_2 - b_2c_2} \\
b_1d_2 - d_1b_2 & \frac{b_1c_2 - d_1a_2}{a_2d_2 - b_2c_2}
\end{bmatrix},
\]
since $a_2d_2 - b_2c_2 = \det M_1 = 1$. So, \[
M_1M_2^{-1} = \begin{bmatrix}
a_1 & c_1 \\
b_1 & d_1
\end{bmatrix} \begin{bmatrix}
d_2 & -c_2 \\
a_2 & c_2
\end{bmatrix} = \begin{bmatrix}
a_1d_2 - c_1b_2 & a_1c_2 + c_1d_2 \\
b_1d_2 - d_1b_2 & b_1c_2 - d_1a_2
\end{bmatrix}.
\]

From this, obviously, follows that if M_1 and M_2 have real entries, then $M_1M_2^{-1}$ has also real entries. So, $M_1M_2^{-1} \in SL(2, \mathbb{R})$ whenever $M_1 \in SL(2, \mathbb{R})$ and $M_2 \in SL(2, \mathbb{R})$.

(ii) To prove that $GL(2, \mathbb{Q})$ is a subgroup of $GL(2, \mathbb{R})$, we use Theorem 4 again. First of all note that $GL(2, \mathbb{Q})$ is nonempty, since \[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} \in GL(2, \mathbb{Q}).
\]

Let \[
M_1 = \begin{bmatrix}
a_1 & c_1 \\
b_1 & d_1
\end{bmatrix} \quad \text{and} \quad M_2 = \begin{bmatrix}
a_2 & c_2 \\
b_2 & d_2
\end{bmatrix}
\]
be from $GL(2, \mathbb{Q})$. Then $\det(M_1M_2^{-1}) \neq 0$, since \[
\det(M_1M_2^{-1}) = \det(M_1)\det(M_2^{-1}) = \det(M_1)[\det(M_2)]^{-1},
\]

Finally, \[
M_1M_2^{-1} = \begin{bmatrix}
a_1 & c_1 \\
b_1 & d_1
\end{bmatrix} \begin{bmatrix}
d_2 & -c_2 \\
a_2 & c_2
\end{bmatrix} = \begin{bmatrix}
d_1d_2 - c_1b_2 & \frac{-a_1c_2 + c_1a_2}{a_2d_2 - b_2c_2} \\
b_1d_2 - d_1b_2 & \frac{b_1c_2 - d_1a_2}{a_2d_2 - b_2c_2}
\end{bmatrix},
\]
which is equal to \[
\begin{bmatrix}
da_1d_2 - c_1b_2 & a_1c_2 + c_1d_2 \\
b_1d_2 - d_1b_2 & b_1c_2 - d_1a_2
\end{bmatrix}.
\]
which is nonzero, since \(\det M_1 \neq 0 \) and \(\det M_2 \neq 0 \). Finally,

\[
M_1 M_2^{-1} = \begin{pmatrix} a_1 & c_1 \\ b_1 & d_1 \end{pmatrix} \begin{pmatrix} a_2 & c_2 \\ b_2 & d_2 \end{pmatrix}^{-1} = \begin{pmatrix} a_1 & c_1 \\ b_1 & d_1 \end{pmatrix} \begin{pmatrix} d_2 & -c_2 \\ b_2 & a_2 \end{pmatrix} = \begin{pmatrix} a_1 d_2 - c_1 b_2 & a_1 c_2 - c_1 a_2 \\ b_1 d_2 - c_1 b_2 & b_1 c_2 - d_1 a_2 \end{pmatrix}.
\]

From this, obviously, follows that if \(M_1 \) and \(M_2 \) have rational entries, then \(M_1 M_2^{-1} \) has also rational entries. So, \(M_1 M_2^{-1} \in \text{GL}(2, \mathbb{Q}) \) whenever \(M_1 \in \text{GL}(2, \mathbb{Q}) \) and \(M_2 \in \text{GL}(2, \mathbb{Q}) \).

\[2.46\] Give an example of two subgroups \(H \) and \(K \) of a group \(G \) whose union \(H \cup K \) is not a subgroup of \(G \).

Solution:
Let \(G = V, \ H = \{(1), (12)(34)\} \), and \(K = \{(1), (13)(24)\} \). Then \(H \cup K = \{(1), (12)(34), (13)(24)\} \), which is not a subgroup, since it is not closed. In fact, \((12)(34)(13)(24) = (14)(23) \notin H \cup K \).

\[2.48\] If \(H \) and \(K \) are subgroups of a group \(G \) and if \(|H|\) and \(|K|\) are relatively prime, prove that \(H \cap K = \{1\} \).

Solution:
Let \(x \) be any element from \(H \cap K \). First of all note that by Corollary 2 we have

\[a^{|H|} = 1 = a^{|K|}. \quad (*) \]

Let \(g \) be the order of \(x \). Then \((*)\) and Theorem 7 yield \(g \mid |H| \) and \(g \mid |K| \). Since \(|H|\) and \(|K|\) are relatively prime, it follows that \(g = 1 \), which implies \(x = 1 \).

\[2.49\] Let \(G = \langle a \rangle \) be a cyclic group of order \(n \). Show that \(a^k \) is a generator of \(G \) if and only if \((k, n) = 1 \).

Solution:
\(\implies \) Let \(G = \langle a \rangle \) be a cyclic group of order \(n \) and let \(a^k \) be a generator of \(G \). We prove that \((k, n) = 1 \). First of all note that by Corollary 2 we have

\[a^{|G|} = 1 \implies a^n = 1. \]

We now suppose to the contrary that \((k, n) = \ell > 1 \). Then \(k = \ell d_1 \) and \(n = \ell d_2 \) for some \(d_1, d_2 \in \mathbb{Z} \). Then

\[(a^k)^{d_2} = (a^{\ell d_1})^{d_2} = (a^{d_2})^{d_1} = (a^n)^{d_1} = 1^{d_1} = 1. \]

Note that since \(\ell > 1 \), we have \(d_2 < n \). This means that the order of \(a^k \) is \(< n \). This is impossible, because by Theorem 6 the order of a generator should be equal to the order of \(G \), which is \(n \).

\(\impliedby \) Let \(G = \langle a \rangle \) be a cyclic group of order \(n \) and let \((k, n) = 1 \). We prove that \(a^k \) is a generator of \(G \). In fact, let \(g \) be the order of \(a^k \). Then

\[(a^k)^g = 1. \quad (*) \]
On the one hand, since $|\langle a \rangle| = n$, by Theorem 6 the order of a is n. From this and (\star) by Theorem 7 we get $n \mid kg$. This by Euclid’s Lemma gives $n \mid g$, since $(k, n) = 1$. So, $n \leq g$. On the other hand,

$$(a^k)^n = (a^n)^k = 1^k = 1,$$

so $g \leq n$. Therefore $n = g$.

2.50 Prove that every subgroup S of a cyclic group $G = \langle a \rangle$ is itself cyclic.

Solution:
If $S = \{1\}$, we are done, since $\{1\}$ is cyclic. Suppose $S \neq \{1\}$, that is $S = \{1, a^{k_1}, a^{k_2}, \ldots \}$. Let k be the smallest positive integer such that $a^k \in S$. If $S = \langle a^k \rangle$, we are done. Suppose $S \neq \langle a^k \rangle$. This means, that there exists $a^{k_i} \in S$ such that $k_i \neq dk$. Therefore by the Division Algorithm we get

$$k_i = dk + r, \quad 1 \leq r < k,$$

so $a^{k_i} = a^{dk+r} = a^{dk}a^r$, hence $a^r = a^k a^{-dk}$. Clearly, $a^{k_i}, a^{-dk} \in S$, therefore $a^r \in S$, which is impossible, since $1 \leq r < k$ and k is the smallest positive integer such that $a^k \in S$.

2.51 Prove that if G is a cyclic group of order n and if $d \mid n$, then G has a subgroup of order d.

Solution:
Let $G = \langle a \rangle$. By Theorem 6, the order of a is n. Then

$$a^n = 1.$$

Since $d \mid n$, we have $n = kd$. Consider $H = \langle a^k \rangle$ and let g be the order of a^k. By Theorem 6 we have $|H| = g$. We prove that the order of H is d, i.e. $g = d$.

In fact, since g is the order of a^k, it follows that $(a^k)^g = 1$, so $a^{kg} = 1$. Note that $g \geq d$, because otherwise

$$g < d \quad \overset{xk}{\Rightarrow} \quad kg < kd \quad \overset{n=kd}{\Rightarrow} \quad kg < n.$$

So, $a^{kg} = 1$ and $kg < n$, which is impossible, since n is the smallest positive number with $a^n = 1$. Finally, we note that

$$(a^k)^d = a^{kd} = a^n = 1.$$

So, d is the smallest power of a^k which gives 1, i.e. $g = d$.

2.52 Let G be a group of order 4. Prove that either G is cyclic or $x^2 = 1$ for every $x \in G$. Conclude, using Exercise 2.41, that G must be abelian.

Solution:
Pick some $x \in G$ and consider $H = \langle a \rangle$. If $|H| = 4$, then $H = G$, therefore G is cyclic and we are done. Suppose $|H| < 4$. Since H is a subgroup of G, by Lagrange’s Theorem we have $|H| = 2$ or $|H| = 1$, therefore by Theorem 6 the order of x is 2 (which means, that $x^2 = 1$) or 1 (which means, that $x = 1$, so $x^2 = 1$ again). So, in both cases $x^2 = 1$.

Finally, to show that G is abelian, we note that if G is cyclic, then it is abelian, since all cyclic groups are abelian. If $x^2 = 1$ for every $x \in G$, then G is abelian by Exercise 2.41.