Definition:
A commutative ring \(R \) is a set with two operations, addition and multiplication, such that:

(i) \(R \) is an abelian group under addition;
(ii) \(ab = ba \) for all \(a, b \in R \) (commutative law);
(iii) \(a(bc) = (ab)c \) for any \(a, b, c \in R \) (associative law);
(iv) there is an element \(1 \in R \) with \(1 \neq 0 \) and with \(1 \cdot a = a \cdot 1 = a \) for any \(a \in R \);
(v) \(a(b + c) = ab + ac \) for any \(a, b, c \in R \) (distributive law).

Example:
1. \(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \) are commutative rings.
2. \(\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\} \) is a commutative ring.
3. \(\{a + b\sqrt{2} : a, b \in \mathbb{Z}\} \) is a commutative ring.
4. \(\{a + b\sqrt{2} : a, b \in \mathbb{Z}\} \) is not a ring. Moreover, \(\{a + b\sqrt{2} : a, b \in \mathbb{Q}\} \) is not a ring.
5. The set of all \(2 \times 2 \) matrices is a noncommutative ring.
6. \(\mathbb{Z}_m \) is a commutative ring.

Theorem 1:
Let \(R \) be a commutative ring. Then:

(i) \(0 \cdot a = 0 \) for any \(a \in R \).
(ii) If \(-a \) is that number which, when added to \(a \), gives \(0 \), then \((-1)(-a) = a \) for any \(a \in R \).
(iii) \((-1)a = -a \) for any \(a \in R \).

Definition:
A subset \(S \) of a commutative ring \(R \) is a subring of \(R \) if:

(i) \(1 \in S \);
(ii) if \(a, b \in S \), then \(a - b \in S \);
(iii) if \(a, b \in S \), then \(ab \in S \).

Example:
1. \(\mathbb{Z} \) is a subring of \(\mathbb{Q} \); \(\mathbb{Q} \) is a subring of \(\mathbb{R} \); \(\mathbb{R} \) is a subring of \(\mathbb{C} \);
2. \(\mathbb{Z}[i] \) is a subring of \(\mathbb{C} \).

Definition:
A domain is a commutative ring \(R \) that satisfies the cancellation law for multiplication:

if \(ca = cb \) and \(c \neq 0 \), then \(a = b \).
Example:
1. \(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \) are domains.
2. \(\mathbb{Z}_4 \) is not a domain, since from \([2][2] = [2][0] \) does not follow \([2] = [0] \).

Theorem 2:
A commutative ring \(R \) is a domain if and only if the product of any two nonzero elements of \(R \) is nonzero.
Proof:

\Rightarrow) Let R be a domain, i.e. the cancellation law holds. We should prove that the product of any two nonzero elements of R is nonzero. Assume to the contrary that there exist $a \neq 0, b \neq 0$ with

$$ab = 0. \hspace{1cm} (\ast)$$

Note that $0 \cdot b = 0$ by (i) of Theorem 1. Combining this with (\ast), we get

$$ab = 0 \cdot b.$$

Canceling out b, we obtain $a = 0$. Contradiction.

\Leftarrow) Suppose the product of any two nonzero elements of R is nonzero. We should prove that R is a domain, i.e. the cancellation law holds. In fact, if

$$ca = cb \text{ with } c \neq 0,$$

then

$$0 = ca - cb = c(a - b).$$

Since $c \neq 0$ and the product of any two nonzero elements of R is nonzero, it follows that $a - b = 0$, so $a = b$. ■

Corollary:

\mathbb{Z}_m is a domain if and only if m is a prime.
Proof:

\implies) Let \mathbb{Z}_m be a domain. We should prove that m is a prime. In fact, assume to the contrary that m is composite, that is

$$m = ab, \quad \text{where} \quad 1 < a, b < m.$$

Then

$$[a][b] = [0],$$

which contradicts Theorem 2.

\iff) Let m be a prime. We should prove that \mathbb{Z}_m is a domain. In fact, assume to the contrary that

$$[a][b] = [0]$$

for some nonzero $[a], [b] \in \mathbb{Z}_m$. This means

$$m \mid ab.$$

From this by Euclid’s Lemma we get $m \mid a$ or $m \mid b$, which means

$$[a] = 0 \quad \text{or} \quad [b] = 0.$$

We get a contradiction. \blacksquare
Definition:
A commutative ring R is a set with two operations, addition and multiplication, such that:

(i) R is an abelian group under addition;

(ii) $ab = ba$ for all $a, b \in R$ (commutative law);

(iii) $a(bc) = (ab)c$ for any $a, b, c \in R$ (associative law);

(iv) there is an element $1 \in R$ with $1 \neq 0$ and with $1 \cdot a = a \cdot 1 = a$ for any $a \in R$;

(v) $a(b+c) = ab + ac$ for any $a, b, c \in R$ (distributive law).
Example:
1. \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} are commutative rings.
2. $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ is a commutative ring.
3. $\{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ is a commutative ring.
4. $\{a + b\sqrt[3]{2} : a, b \in \mathbb{Z}\}$ is not a ring. Moreover, $\{a + b\sqrt[3]{2} : a, b \in \mathbb{Q}\}$ is not a ring.
5. The set of all 2×2 matrices is a noncommutative ring.
6. \mathbb{Z}_m is a commutative ring.
Theorem 1:
Let R be a commutative ring. Then:

(i) $0 \cdot a = 0$ for any $a \in R$.

(ii) If $-a$ is that number which, when added to a, gives 0, then $(-1)(-a) = a$ for any $a \in R$.

(iii) $(-1)a = -a$ for any $a \in R$.
Definition:
A subset S of a commutative ring R is a subring of R if:
(i) $1 \in S$;
(ii) if $a, b \in S$, then $a - b \in S$;
(iii) if $a, b \in S$, then $ab \in S$.

Example:
1. \mathbb{Z} is a subring of \mathbb{Q}; \mathbb{Q} is a subring of \mathbb{R}; \mathbb{R} is a subring of \mathbb{C};
2. $\mathbb{Z}[i]$ is a subring of \mathbb{C}.
Definition:
A domain is a commutative ring R that satisfies the cancellation law for multiplication:

if $ca = cb$ and $c \neq 0$, then $a = b$.
Example:
1. \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} are domains.
2. \mathbb{Z}_4 is not a domain, since from
 \[
 [2][2] = [2][0]
 \]
does not follow $[2] = [0]$.
Theorem 2:
A commutative ring R is a domain if and only if the product of any two nonzero elements of R is nonzero.
Proof:

Let R be a domain, i.e. the cancellation law holds. We should prove that the product of any two nonzero elements of R is nonzero. Assume to the contrary that there exist $a \neq 0$, $b \neq 0$ with

$$ ab = 0. \quad (*) $$

Note that $0 \cdot b = 0$ by (i) of Theorem 1. Combining this with $(*)$, we get

$$ ab = 0 \cdot b. $$

Canceling out b, we obtain $a = 0$. Contradiction.
Suppose the product of any two nonzero elements of R is nonzero. We should prove that R is a domain, i.e. the cancellation law holds. In fact, if \(ca = cb \) with \(c \neq 0 \), then

\[
0 = ca - cb = c(a - b).
\]

Since \(c \neq 0 \) and the product of any two nonzero elements of R is nonzero, it follows that \(a - b = 0 \), so \(a = b \). ■
Corollary:
\mathbb{Z}_m is a domain if and only if m is a prime.

Proof:
\implies) Let \mathbb{Z}_m be a domain. We should prove that m is a prime. In fact, assume to the contrary that m is composite, that is

$$m = ab, \quad \text{where} \quad 1 < a, b < m.$$

Then

$$[a][b] = [0],$$

which contradicts Theorem 2.
Let m be a prime. We should prove that \mathbb{Z}_m is a domain. In fact, assume to the contrary that
\[[a][b] = [0] \]
for some nonzero $[a], [b] \in \mathbb{Z}_m$. This means that
\[m \mid ab. \]
From this by Euclid’s Lemma we get $m \mid a$ or $m \mid b$, which means
\[[a] = 0 \quad \text{or} \quad [b] = 0. \]
We get a contradiction. ■