LAGRANGE’S THEOREM

Definition:
An operation on a set G is a function $*: G \times G \to G$.

Definition:
A group is a set G which is equipped with an operation $*$ and a special element $e \in G$, called the identity, such that
(i) the associative law holds: for every $x, y, z \in G$ we have $x * (y * z) = (x * y) * z$;
(ii) $e * x = x = x * e$ for all $x \in G$;
(iii) for every $x \in G$, there is $x' \in G$ (so-called, inverse) with $x * x' = e = x' * x$.

Definition:
A subset H of a group G is a subgroup if
(i) $e \in H$;
(ii) if $x, y \in H$, then $x * y \in H$;
(iii) if $x \in H$, then $x^{-1} \in H$.

Definition:
If G is a group and $a \in G$, write
$$\langle a \rangle = \{a^n : n \in \mathbb{Z}\} = \{\text{all powers of } a\};$$
$\langle a \rangle$ is called the cyclic subgroup of G generated by a.

Definition:
A group G is called cyclic if $G = \langle a \rangle$ for some $a \in G$. In this case a is called a generator of G.

Definition:
Let G be a group and let $a \in G$. If $a^k = 1$ for some $k \geq 1$, then the smallest such exponent $k \geq 1$ is called the order of a; if no such power exists, then one says that a has infinite order.

Definition:
If G is a finite group, then the number of elements in G, denoted by $|G|$, is called the order of G.

Theorem:
Let G be a finite group and let $a \in G$. Then
$$\text{order of } a = |\langle a \rangle|.$$

Fermat’s Little Theorem:
Let p be a prime. Then $n^p \equiv n \mod p$ for any integer $n \geq 1$.

1
Proof (Sketch): We distinguish two cases.

Case A: Let $p \mid n$, then, obviously, $p \mid n^p - n$, and we are done.

Case B: Let $p \not\mid n$.

Consider the group \mathbb{Z}_p^\times and pick any $[a] \in \mathbb{Z}_p^\times$. Let k be the order of $[a]$. We know that $\langle [a] \rangle$ is a subgroup of \mathbb{Z}_p^\times and by the Theorem above we obtain

$$|\langle [a] \rangle| = k.$$

Lemma (Lagrange’s Theorem):

If H is a subgroup of a finite group G, then

$$|H| \text{ divides } |G|.$$

By Lagrange’s Theorem we get

$$|\langle [a] \rangle| \text{ divides } |\mathbb{Z}_p^\times|,$$

which gives

$$k \mid p - 1,$$

since $|\langle [a] \rangle| = k$ and $|\mathbb{Z}_p^\times| = p - 1$. So

$$p - 1 = kd$$

for some integer d. On the other hand, since k is the order of $[a]$, it follows that for any $n \in [a]$ we have

$$n^k \equiv 1 \pmod{p},$$

hence

$$n^{kd} \equiv 1^d \equiv 1 \pmod{p},$$

and the result follows, since $kd = p - 1$. ■

Definition:

If H is a subgroup of a group G and $a \in G$, then the coset aH is the following subset of G:

$$aH = \{ah : h \in H\}.$$

Remark:

Cosets are usually not subgroups. In fact, if $a \not\in H$, then $1 \not\in aH$, for otherwise

$$1 = ah \implies a = h^{-1} \not\in H,$$

which is a contradiction.
Example:
Let $G = S_3$ and $H = \{(1), (12)\}$. Then there are 3 cosets:

$$(12)H = \{(1), (12)\} = H,$$

$$(13)H = \{(13), (123)\} = (123)H,$$

$$(23)H = \{(23), (132)\} = (132)H.$$

Lemma:
Let H be a subgroup of a group $G,$ and let $a, b \in G.$ Then

(i) $aH = bH \iff b^{-1}a \in H.$

(ii) If $aH \cap bH \neq \emptyset,$ then $aH = bH.$

(iii) $|aH| = |H|$ for all $a \in G.$

Proof:

(i) \Rightarrow Let $aH = bH,$ then for any $h_1 \in H$ there is $h_2 \in H$ with $ah_1 = bh_2.$ This gives

$$b^{-1}a = h_2h_1^{-1} \implies b^{-1}a \in H,$$

since $h_2 \in H$ and $h_1^{-1} \in H.$

\Leftarrow) Let $b^{-1}a \in H.$ Put $b^{-1}a = h_0.$ Then

$$aH \subseteq bH,$$ since if $x \in aH,$ then $x = ah \implies x = b(b^{-1}a)h = h_0h = bh_1 \in bH;$$

$$bH \subseteq aH,$$ since if $x \in bH,$ then $x = bh \implies x = a(b^{-1}a)^{-1}h = ah_0^{-1}h = ah_2 \in aH.$

So, $aH \subseteq bH$ and $bH \subseteq aH,$ which gives $aH = bH.$

(ii) Let $aH \cap bH \neq \emptyset,$ then there exists an element x with

$$x \in aH \cap bH \implies ah_1 = x = bh_2 \implies b^{-1}a = h_2h_1^{-1} \in H,$$

therefore $aH = bH$ by (i).

(iii) Note that if h_1 and h_2 are two distinct elements from $H,$ then ah_1 and ah_2 are also distinct, since otherwise

$$ah_1 = ah_2 \implies a^{-1}ah_1 = a^{-1}ah_2 \implies h_1 = h_2,$$

which is a contradiction. So, if we multiply all elements of H by $a,$ we obtain the same number of elements, which means that $|aH| = |H|.$
Lagrange’s Theorem:
If H is a subgroup of a finite group G, then
$$|H| \text{ divides } |G|.$$

Proof:
Let $|G| = t$ and
$$\{a_1H, a_2H, \ldots, a_tH\}$$
be the family of all cosets of H in G. Then
$$G = a_1H \cup a_2H \cup \ldots \cup a_tH,$$
because $G = \{a_1, a_2, \ldots, a_t\}$ and $1 \in H$. By (ii) of the Lemma above for any two cosets a_iH and a_jH we have only two possibilities:

$$a_iH \cap a_jH = \emptyset \quad \text{or} \quad a_iH = a_jH.$$

Moreover, from (iii) of the Lemma above it follows that all cosets have exactly $|H|$ number of elements. Therefore

$$|G| = |H| + |H| + \ldots + |H| \implies |G| = d|H|,$$
and the result follows. ■

Corollary 1:
If G is a finite group and $a \in G$, then the order of a is a divisor of $|G|$.

Proof:
By the Theorem above, the order of the element a is equal to the order of the subgroup $H = \langle a \rangle$. By Lagrange’s Theorem, $|H|$ divides $|G|$, therefore the order a divides $|G|$. ■

Corollary 2:
If a finite group G has order m, then $a^m = 1$ for all $a \in G$.

Proof:
Let d be the order of a. By Corollary 1, $d \mid m$; that is, $m = dk$ for some integer k. Thus,

$$a^m = a^{dk} = (a^d)^k = 1.$$

Corollary 3:
If p is a prime, then every group G of order p is cyclic.

Proof:
Choose $a \in G$ with $a \neq 1$, and let $H = \langle a \rangle$ be the cyclic subgroup generated by a. By Lagrange’s Theorem, $|H|$ is a divisor of $|G| = p$. Since p is a prime and $|H| > 1$, it follows that

$$|H| = p = |G|,$$
and so $H = G$, as desired. ■
Definition:
An operation on a set G is a function $*: G \times G \rightarrow G$.

Definition:
A group is a set G which is equipped with an operation $*$ and a special element $e \in G$, called the identity, such that

(i) the associative law holds: for every $x, y, z \in G$ we have $x*(y*z) = (x*y)*z$;
(ii) $e*x = x = x*e$ for all $x \in G$;
(iii) for every $x \in G$, there is $x' \in G$ (so-called, inverse) with $x*x' = e = x'*x$.
Definition:
A subset H of a group G is a **subgroup** if

(i) $e \in H$;
(ii) if $x, y \in H$, then $x \ast y \in H$;
(iii) if $x \in H$, then $x^{-1} \in H$.
Definition:
If G is a group and $a \in G$, write
$\langle a \rangle = \{a^n : n \in \mathbb{Z}\} = \{\text{all powers of } a\}$;
$\langle a \rangle$ is called the cyclic subgroup of G generated by a.

Definition:
A group G is called cyclic if $G = \langle a \rangle$ for some $a \in G$. In this case a is called a generator of G.
Definition:
Let G be a group and let $a \in G$. If $a^k = 1$ for some $k \geq 1$, then the smallest such exponent $k \geq 1$ is called the order of a; if no such power exists, then one says that a has infinite order.

Definition:
If G is a finite group, then the number of elements in G, denoted by $|G|$, is called the order of G.
Theorem:
Let G be a finite group and let $a \in G$. Then
order of $a = |\langle a \rangle|$.

Fermat’s Little Theorem:
Let p be a prime. Then $n^p \equiv n \pmod{p}$ for any integer $n \geq 1$.
Proof (Sketch): We distinguish two cases.

Case A: Let $p \mid n$, then, obviously, $p \mid n^p - n$, and we are done.
Case B: Let

\[p \nmid n. \]

Consider the group \(\mathbb{Z}_p^\times \) and pick any \([a] \in \mathbb{Z}_p^\times\). Let \(k \) be the order of \([a]\). We know that \(\langle [a] \rangle \) is a subgroup of \(\mathbb{Z}_p^\times \) and by the Theorem above we obtain

\[|\langle [a] \rangle| = k. \]

Lemma (Lagrange’s Theorem):

If \(H \) is a subgroup of a finite group \(G \), then

\[|H| \text{ divides } |G|. \]
By Lagrange’s Theorem we get

\[|\langle [a] \rangle| \text{ divides } |\mathbb{Z}_p^\times|, \]

which gives

\[k \mid p - 1, \]

since \(|\langle [a] \rangle| = k \) and \(|\mathbb{Z}_p^\times| = p - 1 \). So

\[p - 1 = kd \]

for some integer \(d \). On the other hand, since \(k \) is the order of \([a]\), it follows that for any \(n \in [a] \) we have

\[n^k \equiv 1 \mod p, \]

hence

\[n^{kd} \equiv 1^d \equiv 1 \mod p, \]

and the result follows, since \(kd = p - 1 \). ■
Definition:
If \(H \) is a subgroup of a group \(G \) and \(a \in G \), then the coset \(aH \) is the following subset of \(G \):
\[
aH = \{ ah : h \in H \}.
\]

Remark:
Cosets are usually not subgroups. In fact, if \(a \not\in H \), then \(1 \not\in aH \), for otherwise
\[
1 = ah \implies a = h^{-1} \not\in H,
\]
which is a contradiction.
Example:
Let $G = S_3$ and $H = \{(1), (12)\}$. Then there are 3 cosets:

$(12)H = \{(1), (12)\} = H,$

$(13)H = \{(13), (123)\} = (123)H,$

$(23)H = \{(23), (132)\} = (132)H.$
Lemma:
Let H be a subgroup of a group G, and let $a, b \in G$. Then

(i) $aH = bH \iff b^{-1}a \in H$.

(ii) If $aH \cap bH \neq \emptyset$, then $aH = bH$.

(iii) $|aH| = |H|$ for all $a \in G$.
Proof:
(i) \(\Rightarrow \) Let \(aH = bH \), then for any \(h_1 \in H \) there is \(h_2 \in H \) with \(ah_1 = bh_2 \). This gives
\[
b^{-1}a = h_2h_1^{-1} \implies b^{-1}a \in H,
\]
since \(h_2 \in H \) and \(h_1^{-1} \in H \).
\(\Leftarrow\) Let \(b^{-1}a \in H\). Put \(b^{-1}a = h_0\). Then

\[
aH \subset bH, \text{ since if } x \in aH, \text{ then } x = ah
\]

\[
\Downarrow
\]

\[
x = b(b^{-1}a)h = bh_0h = bh_1 \in bH
\]

and

\[
bH \subset aH, \text{ since if } x \in bH, \text{ then } x = bh
\]

\[
\Downarrow
\]

\[
x = a(b^{-1}a)^{-1}h = a h_0^{-1}h = ah_2 \in aH.
\]

So, \(aH \subset bH\) and \(bH \subset aH\), which gives \(aH = bH\).
(ii) Let $aH \cap bH \neq \emptyset$, then there exists an element x with

$$x \in aH \cap bH$$

$$\Downarrow$$

$$ah_1 = x = bh_2$$

$$\Downarrow$$

$$b^{-1}a = h_2h_1^{-1} \in H,$$

therefore $aH = bH$ by (i).
(iii) Note that if \(h_1 \) and \(h_2 \) are two distinct elements from \(H \), then \(ah_1 \) and \(ah_2 \) are also distinct, since otherwise

\[
\begin{align*}
ah_1 &= ah_2 \\
\downarrow \\
 a^{-1}ah_1 &= a^{-1}ah_2 \\
\downarrow \\
 h_1 &= h_2,
\end{align*}
\]

which is a contradiction. So, if we multiply all elements of \(H \) by \(a \), we obtain the same number of elements, which means that \(|aH| = |H|\). ■
Lagrange’s Theorem:
If H is a subgroup of a finite group G, then

$|H|$ divides $|G|$.
Proof:
Let \(|G| = t\) and
\[\{a_1H, a_2H, \ldots, a_tH\} \]
be the family of all cosets of \(H\) in \(G\). Then
\[G = a_1H \cup a_2H \cup \ldots \cup a_tH, \]
because \(G = \{a_1, a_2, \ldots, a_t\}\) and \(1 \in H\). By (ii) of the Lemma above for any two cosets \(a_iH\) and \(a_jH\) we have only two possibilities:
\[a_iH \cap a_jH = \emptyset \quad \text{or} \quad a_iH = a_jH. \]
Moreover, from (iii) of the Lemma above it follows that all cosets have exactly \(|H|\) number of elements. Therefore
\[|G| = |H| + \ldots + |H| \quad \iff \quad |G| = d|H|, \]
and the result follows. ■
Corollary 1:

If G is a finite group and $a \in G$, then the order of a is a divisor of $|G|$.

Proof:

By the Theorem above, the order of the element a is equal to the order of the subgroup

$$H = \langle a \rangle.$$

By Lagrange’s Theorem, $|H|$ divides $|G|$, therefore the order a divides $|G|$. ■
Corollary 2:
If a finite group G has order m, then

$$a^m = 1$$

for all $a \in G$.

Proof:
Let d be the order of a. By Corollary 1, $d \mid m$; that is,

$$m = dk$$

for some integer k. Thus,

$$a^m = a^{dk} = (a^d)^k = 1.$$
Corollary 3:

If p is a prime, then every group G of order p is cyclic.

Proof:

Choose $a \in G$ with $a \neq 1$, and let

$$H = \langle a \rangle$$

be the cyclic subgroup generated by a. By Lagrange’s Theorem, $|H|$ is a divisor of $|G| = p$. Since p is a prime and $|H| > 1$, it follows that

$$|H| = p = |G|,$$

and so $H = G$, as desired. ■