Permutations

Definition:

A **permutation** of a set X is a rearrangement of its elements.

Example:

Let $X = \{1, 2, 3\}$. Then there are 6 permutations:

123, 132, 213, 231, 312, 321.

Definition':

A **permutation** of a set X is a one-one correspondence (a bijection) from X to itself.

Notation:

Let $X = \{1, 2, ..., n\}$ and $\alpha : X \to X$ be a permutation. It is convenient to describe this function in the following way:

$$\alpha = \left(\begin{array}{cccc} 1 & 2 & \dots & n \\ \alpha(1) & \alpha(2) & \dots & \alpha(n) \end{array}\right).$$

Example:

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$$

Definition:

Let $X = \{1, 2, ..., n\}$ and $\alpha : X \to X$ be a permutation. Let $i_1, i_2, ..., i_r$ be distinct numbers from $\{1, 2, ..., n\}$. If

$$\alpha(i_1) = i_2, \quad \alpha(i_2) = i_3, \ \dots, \ \alpha(i_{r-1}) = i_r, \quad \alpha(i_r) = i_1$$

and $\alpha(i_{\nu}) = i_{\nu}$ for other numbers from $\{1, 2, \ldots, n\}$, then α is called an *r***-cycle**.

Notation:

An *r*-cycle is denoted by $(i_1 \ i_2 \dots i_r)$.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 4 & 1 \end{pmatrix} = (125) \quad 3 - \text{cycle}$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix} \text{ is not a cycle}$$

Remark:

We can use different notations for the same cycles. For example,

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = (1) = (2) = (3), \qquad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (123) = (231) = (312).$$

Warning:

Do not confuse notations of a permutation and a cycle. For example,

 $(123) \neq 123.$

Instead, (123) = 231 and 123 = (1).

Composition (Product) Of Permutations

Let

$$\alpha = \begin{pmatrix} 1 & 2 & \dots & n \\ \alpha(1) & \alpha(2) & \dots & \alpha(n) \end{pmatrix} \text{ and } \beta = \begin{pmatrix} 1 & 2 & \dots & n \\ \beta(1) & \beta(2) & \dots & \beta(n) \end{pmatrix}.$$

Then

$$\alpha \circ \beta = \begin{pmatrix} 1 & 2 & \dots & n \\ \alpha(\beta(1)) & \alpha(\beta(2)) & \dots & \alpha(\beta(n)) \end{pmatrix},$$

$$\beta \circ \alpha = \begin{pmatrix} 1 & 2 & \dots & n \\ \beta(\alpha(1)) & \beta(\alpha(2)) & \dots & \beta(\alpha(n)) \end{pmatrix}.$$

Example:

Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix}$. We have:
 $\alpha \circ \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 5 & 2 \end{pmatrix}$,
 $\beta \circ \alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 1 & 5 \end{pmatrix}$.

Remark:

It is convenient to represent a permutation as the product of circles.

Remark:

One can find a composition of permutations using circles.

Example:

1. Let

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{pmatrix} = (1532)(4) = (1532),$$

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix} = (14)(2)(35) = (14)(35)$$

We have:

$$\alpha \circ \beta = (1532)(14)(35) = (1452)(3) = (1452) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 5 & 2 \end{pmatrix},$$

$$\beta \circ \alpha = (14)(35)(1532) = (1324)(5) = (1324) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 1 & 5 \end{pmatrix}.$$

2. Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 4 & 6 & 1 & 7 & 3 & 2 \end{pmatrix} = (15724)(36)$. Find α^{-1} . We have: $\alpha^{-1} = (42751)(63)$

In fact,

$$\alpha \circ \alpha^{-1} = (15724)(36)(42751)(63) = (1)$$

and

$$\alpha^{-1} \circ \alpha = (42751)(63)(15724)(36) = (1).$$

Theorem:

The inverse of the cycle $\alpha = (i_1 i_2 \dots i_r)$ is the cycle $\alpha^{-1} = (i_r i_{r-1} \dots i_1)$.

Theorem:

Every permutation α is either a cycle or a product of disjoint (with no common elements) cycles.

Solutions

1. Determine which permutations are equal:

(a) $(12) \neq 12$	(g) $(124)(53) = (53)(124)$
(b) $(1) = 12$	(h) $(124)(53) = (124)(35)$
(c) $(1)(2) = (1)$	(i) $(124)(53) \neq (142)(53)$
(d) $(12)(34) \neq (1234)$	(j) $(12345) \neq 12345$
(e) $(12)(34) = (123)(234)$	(k) $(12345) = 23451$
(f) $(12)(34) \neq (123)(234)(341)$	(l) $(23451) = 23451$

2. Factor the following permutations into the product of cycles:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 5 & 4 & 6 & 7 & 8 \end{pmatrix} = (4 \ 5)$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 5 & 3 & 10 & 4 & 11 & 12 & 6 & 9 & 1 & 2 & 8 & 7 \end{pmatrix} = (1 \ 5 \ 11 \ 8 \ 9)(2 \ 3 \ 10)(6 \ 12 \ 7)$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & 12 & 7 & 9 & 14 & 8 & 4 & 5 & 3 & 6 & 10 & 11 & 13 & 15 \end{pmatrix} = (3 \ 12 \ 10)(4 \ 7 \ 8)(5 \ 9)(6 \ 14 \ 13 \ 11)$$

3. Find the following products:

(12)(34)(56)(1234) = (24)(56)(12)(23)(34)(45) = (12345)(12)(34)(56) = (12)(34)(56)(123)(234)(345) = (12)(45)

4. Let α = (135)(24), β = (124)(35). Find:
(a) αβ = (143)
(b) βα = (152)
(c) β⁻¹ = (421)(53)
(d) α²⁰⁰⁴ = (1)

Problems

1. Factor the following permutations into the product of cycles:

2. Find the following products:

```
(134)(23)(235)(45)
(24)(35)(12345)
(345)(234)(125)
```

- 3. Let $\alpha = (124)(3567)$. Find:
 - (a) α^{-1}
 - (b) α^{12}

Groups

Definition:

An operation on a set G is a function $*: G \times G \to G$.

Definition:

A group is a set G which is equipped with an operation * and a special element $e \in G$, called the identity, such that

(i) the associative law holds: for every $x, y, z \in G$,

$$x \ast (y \ast z) = (x \ast y) \ast z;$$

(ii) e * x = x = x * e for all $x \in G$;

(iii) for every $x \in G$, there is $x' \in G$ with x * x' = e = x' * x.

Example:

Set	Operation "+"	Operation "*"	Additional Condition

Set	Operation "+"	Operation "*"

Example:

Set	Operation "+"	Operation "*"
$\{2n:n\in\mathbb{Z}\}$		
$\{2n+1:n\in\mathbb{Z}\}$		
$\{3n:n\in\mathbb{Z}\}$		
$\{kn : n \in \mathbb{Z}\}, \text{ where } k \in \mathbb{N} \text{ is some fixed number}$		
$\{a^n : n \in \mathbb{Z}\}, \text{ where } a \in \mathbb{R}, a \neq 0, \pm 1, \text{ is some fixed number}$		
$\left\{\frac{p}{2^n}: p \in \mathbb{N}, n \in \mathbb{Z}_{\ge 0}\right\}$		

Set	Operation
$\mathbb{R}_{>0}$	$a * b = a^b$
$\mathbb{R}_{>0}$	$a * b = a^2 b^2$

Definition:

An operation on a set G is a function $*: \overline{G \times G} \to \overline{G}$.

Definition:

A group is a set G which is equipped with an operation * and a special element $e \in G$, called the <u>identity</u>, such that

(i) the associative law holds: for every $x, y, z \in G$,

$$x \ast (y \ast z) = (x \ast y) \ast z;$$

(ii) e * x = x = x * e for all $x \in G$;

(iii) for every $x \in G$, there is $x' \in G$ with x * x' = e = x' * x.

Set	"+"	'' *''	Add.	Cond.
N				
Z				
$oldsymbol{Q}$				
R				
$R\setminus Q$				

Set	"+"	'' *''
$Z_{>0}$		
$Z_{\geq 0}$		
$Q_{>0}$		
$Q_{\geq 0}$		
$R_{>0}$		
$R_{\geq 0}$		

Set	"+"	'' *''
$\{2n:n\in Z\}$		
$\{2n+1:n\in Z\}$		
$\{3n:n\in Z\}$		
$\{kn:n\in Z\}$		
$\{a^n:n\in Z\}, ext{ where } a eq 0,\pm 1$		
$\left\{rac{p}{2^n}:p\in N,n\in Z_{\geq 0} ight\}$		

Set	Operation
$R_{>0}$	$a * b = a^b$
$R_{>0}$	$a * b = a^2 b^2$