Applications of Fermat’s Little Theorem and Congruences

Definition:
Let \(m \) be a positive integer. Then integers \(a \) and \(b \) are congruent modulo \(m \), denoted by
\[
a \equiv b \mod m,
\]
if \(m \mid (a - b) \).

Example:
\[
3 \equiv 1 \mod 2, \quad 6 \equiv 4 \mod 2, \quad -14 \equiv 0 \mod 7, \quad 25 \equiv 16 \mod 9, \quad 43 \equiv -27 \mod 35.
\]

Properties:
Let \(m \) be a positive integer and let \(a, b, c, d \) be integers. Then
1. \(a \equiv a \mod m \)
2. If \(a \equiv b \mod m \), then \(b \equiv a \mod m \).
3. If \(a \equiv b \mod m \) and \(b \equiv c \mod m \), then \(a \equiv c \mod m \).
4. (a) If \(a \equiv qm + r \mod m \), then \(a \equiv r \mod m \).
 (b) Every integer \(a \) is congruent mod \(m \) to exactly one of \(0, 1, \ldots, m - 1 \).
5. If \(a \equiv b \mod m \) and \(c \equiv d \mod m \), then
\[
a \pm c \equiv b \pm d \mod m \quad \text{and} \quad ac \equiv bd \mod m.
\]
5'. If \(a \equiv b \mod m \), then
\[
a \pm c \equiv b \pm c \mod m \quad \text{and} \quad ac \equiv bc \mod m.
\]
5''. If \(a \equiv b \mod m \), then
\[
a^n \equiv b^n \mod m \quad \text{for any} \ n \in \mathbb{Z}^+.
\]
6. If \((c, m) = 1\) and \(ac \equiv bc \mod m \), then \(a \equiv b \mod m \).

Theorem (Fermat’s Little Theorem): Let \(p \) be a prime. Then
\[
n^p \equiv n \mod p
\]
for any integer \(n \geq 1 \).

Corollary: Let \(p \) be a prime. Then
\[
n^{p-1} \equiv 1 \mod p
\]
for any integer \(n \geq 1 \) with \((n, p) = 1\).
1. Find all solutions to each of the following congruences:
 (i) \(2x \equiv 1 \mod 3 \).
 (ii) \(3x \equiv 4 \mod 8 \).
 (iii) \(6x \equiv 3 \mod 15 \).
 (iv) \(8x \equiv 7 \mod 18 \).
 (v) \(9x + 23 \equiv 28 \mod 25 \).

2. What is the last digit of \(4321^{4321} \)?

3. Prove that there is no perfect square \(a^2 \) which is congruent to 2 mod 4.

4. Prove that there is no perfect square \(a^2 \) whose last digit is 2.

5. Prove that 888...882 is not a perfect square.

6*. Prove that there is no perfect square \(a^2 \) whose last digits are 85.

7. Prove that the following equations have no solutions in integer numbers:
 (i) \(x^2 - 3y = 5 \)
 (ii) \(3x^2 - 4y = 5 \)
 (iii) \(x^2 - y^2 = 2002 \)

8. Prove that \(10 \mid 11^{10} - 1 \).

9*. Prove that \(300 \mid 11^{10} - 1 \).

10. Prove that \(17 \mid a^{80} - 1 \) for any \(a \in \mathbb{Z}^+ \) with \((a, 17) = 1 \).

11*. What is the remainder after dividing \(3^{50} \) by 7?
THEOREM AND EXAMPLES

Theorem: If \((a, m) = 1\), then, for every integer \(b\), the congruence

\[ax \equiv b \mod m \]

(1)

has exactly one solution

\[x \equiv bs \mod m, \]

(2)

where \(s\) is such a number that

\[as \equiv 1 \mod m. \]

(3)

Proof (Sketch): We show that (2) is the solution of (1). In fact, if we multiply (2) by \(a\) and (3) by \(b\) (we can do that by property 5'), we get

\[ax \equiv abs \mod m \quad \text{and} \quad bsa \equiv b \mod m, \]

which imply (1) by property 3. ■

Example 1: Find all solutions of the following congruence

\[2x \equiv 5 \mod 7. \]

Solution: We first note that \((2, 7) = 1\). Therefore we can apply the theorem above. Since \(2 \cdot 4 \equiv 1 \mod 7\), we get

\[x \equiv 5 \cdot 4 \equiv 6 \mod 7. \]

Example 2: Find all solutions of the following congruence

\[2x \equiv 5 \mod 8. \]

Solution: Since \((2, 8) = 2\), we can’t apply the theorem above directly. We now note that \(2x \equiv 5 \mod 8\) is equivalent to \(2x - 8y = 5\), which is impossible, since the left-hand side is divisible by 2, whereas the right-hand side is not. So, this equation has no solutions.

Example 3: Find all solutions of the following congruence

\[4x \equiv 2 \mod 6. \]

Solution: Since \((4, 6) = 2\), we can’t apply the theorem above directly again. However, canceling out 2 (think about that!), we obtain

\[2x \equiv 1 \mod 3. \]

Note that \((2, 3) = 1\). Therefore we can apply the theorem above to the new equation. Since \(2 \cdot 2 \equiv 1 \mod 3\), we get

\[x \equiv 1 \cdot 2 \equiv 2 \mod 3. \]

Example 4: What is the last digit of \(345271^{79399}\)?

Solution: It is obvious that \(345271 \equiv 1 \mod 10\), therefore by property 5' we have

\[345271^{79399} \equiv 1^{79399} \equiv 1 \mod 10. \]

This means that the last digit of \(345271^{79399}\) is 1.
Example 5: Prove that there is no integer number a such that a^4 is congruent to 3 mod 4.

Solution: By the property 4(a) each integer number is congruent to 0, 1, 2, or 3 mod 4. Consider all these cases and use property 5′:

- If $a \equiv 0 \text{ mod } 4$, then $a^4 \equiv 0^4 \equiv 0 \text{ mod } 4$.
- If $a \equiv 1 \text{ mod } 4$, then $a^4 \equiv 1^4 \equiv 1 \text{ mod } 4$.
- If $a \equiv 2 \text{ mod } 4$, then $a^4 \equiv 2^4 \equiv 0 \text{ mod } 4$.
- If $a \equiv 3 \text{ mod } 4$, then $a^4 \equiv 3^4 \equiv 1 \text{ mod } 4$.

So, $a^4 \equiv 0$ or 1 mod 4. Therefore $a^4 \not\equiv 3 \text{ mod } 4$.

Example 6: Prove that there is no perfect square a^2 whose last digit is 3.

Solution: By the property 4(a) each integer number is congruent to 0, 1, 2, . . . , 8 or 9 mod 10. Consider all these cases and use property 5′′:

- If $a \equiv 0 \text{ mod } 10$, then $a^2 \equiv 0^2 \equiv 0 \text{ mod } 10$.
- If $a \equiv 1 \text{ mod } 10$, then $a^2 \equiv 1^2 \equiv 1 \text{ mod } 10$.
- If $a \equiv 2 \text{ mod } 10$, then $a^2 \equiv 2^2 \equiv 4 \text{ mod } 10$.
- If $a \equiv 3 \text{ mod } 10$, then $a^2 \equiv 3^2 \equiv 9 \text{ mod } 10$.
- If $a \equiv 4 \text{ mod } 10$, then $a^2 \equiv 4^2 \equiv 6 \text{ mod } 10$.
- If $a \equiv 5 \text{ mod } 10$, then $a^2 \equiv 5^2 \equiv 5 \text{ mod } 10$.
- If $a \equiv 6 \text{ mod } 10$, then $a^2 \equiv 6^2 \equiv 6 \text{ mod } 10$.
- If $a \equiv 7 \text{ mod } 10$, then $a^2 \equiv 7^2 \equiv 9 \text{ mod } 10$.
- If $a \equiv 8 \text{ mod } 10$, then $a^2 \equiv 8^2 \equiv 4 \text{ mod } 10$.
- If $a \equiv 9 \text{ mod } 10$, then $a^2 \equiv 9^2 \equiv 1 \text{ mod } 10$.

So, $a^2 \equiv 0, 1, 4, 5, 6$ or 9 mod 10. Therefore $a^2 \not\equiv 3 \text{ mod } 10$, and the result follows.

Example 7: Prove that 444444444444444444443 is not a perfect square.

Solution: The last digit is 3, which is impossible by Example 6.

Example 8: Prove that the equation $x^4 - 4y = 3$ has no solutions in integer numbers.

Solution: Rewrite this equation as $x^4 = 4y + 3$, which means that $x^4 \equiv 3 \text{ mod } 4$, which is impossible by Example 5.

Example 9: Prove that $10 | 101^{2003} - 1$.

Solution: We have

\[
101 \equiv 1 \text{ mod } 10,
\]

therefore by property 5′′ we get

\[
101^{2003} \equiv 1^{2003} \equiv 1 \text{ mod } 10,
\]

which means that $10 | 101^{2003} - 1$.

Example 10: Prove that $23 | a^{154} - 1$ for any $a \in \mathbb{Z}^+$ with $(a, 23) = 1$.

Solution: By Fermat’s Little theorem we have

\[
a^{22} \equiv 1 \text{ mod } 23,
\]

therefore by property 5′′ we get

\[
a^{22 \cdot 7} \equiv 1^7 \equiv 1 \text{ mod } 23,
\]

and the result follows.
SOLUTIONS

Problem 1(i): Find all solutions of the congruence $2x \equiv 1 \pmod{3}$.
Solution: We first note that $(2, 3) = 1$. Therefore we can apply the theorem above. Since $2 \cdot 2 \equiv 1 \pmod{3}$, we get $x \equiv 1 \cdot 2 \equiv 2 \pmod{3}$.

Problem 1(ii): Find all solutions of the congruence $3x \equiv 4 \pmod{8}$.
Solution: We first note that $(3, 8) = 1$. Therefore we can apply the theorem above. Since $3 \cdot 3 \equiv 1 \pmod{8}$, we get $x \equiv 4 \cdot 3 \equiv 12 \equiv 4 \pmod{8}$.

Problem 1(iii): Find all solutions of the congruence $6x \equiv 3 \pmod{15}$.
Solution: Since $(6, 15) = 3$, we can’t apply the theorem above directly again. However, canceling out 3, we obtain $2x \equiv 1 \pmod{5}$. Note that $(2, 5) = 1$. Therefore we can apply the theorem above to the new equation. Since $2 \cdot 3 \equiv 1 \pmod{5}$, we get $x \equiv 1 \cdot 3 \equiv 3 \pmod{5}$.

Problem 1(iv): Find all solutions of the congruence $8x \equiv 7 \pmod{18}$.
Solution: Since $(8, 18) = 2$, we can’t apply the theorem above directly. We now note that $8x \equiv 7 \pmod{18}$ is equivalent to $8x - 18y = 7$, which is impossible, since the left-hand side is divisible by 2, whereas the right-hand side is not. So, this equation has no solutions.

Problem 1(v): Find all solutions of the congruence $9x + 23 \equiv 28 \pmod{25}$.
Solution: We first rewrite this congruence as $9x \equiv 5 \pmod{25}$. Note that $(9, 25) = 1$. Therefore we can apply the theorem above. Since $9 \cdot 14 \equiv 1 \pmod{25}$, we get $x \equiv 5 \cdot 14 \equiv 70 \equiv 20 \pmod{25}$.

Problem 2: What is the last digit of 4321^{4321}?
Solution: It is obvious that $4321 \equiv 1 \pmod{10}$, therefore by property 5” we have $4321^{4321} \equiv 1^{4321} \equiv 1 \pmod{10}$. This means that the last digit is 1.

Problem 3: Prove that there is no perfect square a^2 which is congruent to 2 mod 4.
Solution: By the property 4(a) each integer number is congruent to 0, 1, 2, or 3 mod 4. Consider all these cases and use property 5”:
If $a \equiv 0 \pmod{4}$, then $a^2 \equiv 0^2 \equiv 0 \pmod{4}$.
If $a \equiv 1 \pmod{4}$, then $a^2 \equiv 1^2 \equiv 1 \pmod{4}$.
If $a \equiv 2 \pmod{4}$, then $a^2 \equiv 2^2 \equiv 0 \pmod{4}$.
If $a \equiv 3 \pmod{4}$, then $a^2 \equiv 3^2 \equiv 1 \pmod{4}$.
So, $a^2 \equiv 0$ or 1 mod 4. Therefore $a^2 \not\equiv 2 \pmod{4}$.

Problem 4: Prove that there is no perfect square a^2 whose last digit is 2.
Solution: By the property 4(a) each integer number is congruent to 0, 1, 2, ..., 8 or 9 mod 10. Consider all these cases and use property 5”:
If $a \equiv 0 \pmod{10}$, then $a^2 \equiv 0^2 \equiv 0 \pmod{10}$.
If $a \equiv 1 \pmod{10}$, then $a^2 \equiv 1^2 \equiv 1 \pmod{10}$.
If $a \equiv 2 \pmod{10}$, then $a^2 \equiv 2^2 \equiv 4 \pmod{10}$.
If $a \equiv 3 \pmod{10}$, then $a^2 \equiv 3^2 \equiv 9 \pmod{10}$.
If $a \equiv 4 \pmod{10}$, then $a^2 \equiv 4^2 \equiv 6 \pmod{10}$.
If $a \equiv 5 \pmod{10}$, then $a^2 \equiv 5^2 \equiv 5 \pmod{10}$.
If $a \equiv 6 \pmod{10}$, then $a^2 \equiv 6^2 \equiv 6 \pmod{10}$.
If $a \equiv 7 \pmod{10}$, then $a^2 \equiv 7^2 \equiv 9 \pmod{10}$.
If $a \equiv 8 \pmod{10}$, then $a^2 \equiv 8^2 \equiv 4 \pmod{10}$.
If $a \equiv 9 \pmod{10}$, then $a^2 \equiv 9^2 \equiv 1 \pmod{10}$.
So, $a^2 \equiv 0, 1, 4, 5, 6$ or 9 mod 10. Therefore $a^2 \not\equiv 2 \pmod{10}$, and the result follows.
Problem 5: Prove that $888 \ldots 882$ is not a perfect square.
Solution 1: We have $888 \ldots 882 = 4k + 2$. Therefore it is congruent to 2 mod 4 by property 4(a), which is impossible by Problem 3.
Solution 2: The last digit is 2, which is impossible by Problem 4.

Problem 6*: Prove that there is no perfect square a^2 whose last digits are 85.
Solution: It follows from problem 4 that $a^2 \equiv 5$ mod 10 only if $a \equiv 5$ mod 10. Therefore $a^2 \equiv 85$ mod 100 only if $a \equiv 5, 15, 25, \ldots, 95$ mod 100. If we consider all these cases and use property $5''$ the same manner as in problem 4, we will see that $a^2 \equiv 25$ mod 100. Therefore $a^2 \neq 85$ mod 100, and the result follows.

Problem 7(i): Prove that the equation $x^2 - 3y = 5$ has no solutions in integer numbers.
Solution: Rewrite this equation as $x^2 = 3y + 5$, which means that $x^2 \equiv 3 \equiv 2$ mod 3. By the property 4(a) each integer number is congruent to 0, 1, or 2 mod 3. Consider all these cases and use property $5''$:
- If $a \equiv 0$ mod 3, then $a^2 \equiv 0^2 \equiv 0$ mod 3.
- If $a \equiv 1$ mod 3, then $a^2 \equiv 1^2 \equiv 1$ mod 3.
- If $a \equiv 2$ mod 3, then $a^2 \equiv 2^2 \equiv 1$ mod 3.
So, $a^2 \equiv 0$ or 1 mod 3. Therefore $a^2 \neq 2$ mod 3.

Problem 7(ii): Prove that the equation $3x^2 - 4y = 5$ has no solutions in integer numbers.
Solution: Rewrite this equation as $3x^2 = 4y + 5$, which means that $3x^2 \equiv 5 \equiv 1$ mod 4. On the other hand, by Problem 3 we have $x^2 \equiv 0$ or 1 mod 4, hence $3x^2 \equiv 0$ or 3 mod 4. Therefore $x^2 \neq 1$ mod 4.

Problem 7(iii): Prove that the equation $x^2 - y^2 = 2002$ has no solutions in integer numbers.
Solution: By Problem 3 we have $x^2 \equiv 0$ or 1 mod 4, hence $x^2 - y^2 \equiv 0, 1$ or -1 mod 4. On the other hand, $2002 \equiv 2$ mod 4. Therefore $x^2 - y^2 \neq 2002$ mod 4.

Problem 8: Prove that $10 \mid 11^{10} - 1$.
Solution: We have $11 \equiv 1$ mod 10, therefore by property $5''$ we get $11^{10} \equiv 1^{10} \equiv 1$ mod 10, which means that $10 \mid 11^{10} - 1$.

Problem 9*: Prove that $300 \mid 11^{10} - 1$.
Solution: We have
\[
11^{10} - 1 = (11^5 + 1)(11^5 - 1) = (11^5 + 1)(11 - 1)(11^4 + 11^3 + 11^2 + 11 + 1).
\]
Since $11 \equiv 1$ mod 10, by property $5''$ we get $11^n \equiv 1$ mod 10. Therefore by property 5 we obtain
\[
11^4 + 11^3 + 11^2 + 11 + 1 \equiv 5 \text{ mod } 10.
\]
Note that $11^5 + 1$ is divisible by 2 and $11 - 1$ is divisible by 10. Therefore the right-hand side of (*) is divisible by $2 \cdot 10 \cdot 5 = 100$. On the other hand, by Fermat’s Little Theorem, $11^{10} - 1$ is divisible by 3. Since $(3, 100) = 1$, the whole expression is divisible by 300.

Problem 10: Prove that $17 \mid a^{80} - 1$ for any $a \in \mathbb{Z}^+$ with $(a, 17) = 1$.
Solution: By Fermat’s Little theorem we have $a^{16} \equiv 1$ mod 17, therefore by property $5''$ we get $a^{16 \cdot 5} \equiv 1^5 \equiv 1$ mod 17, and the result follows.

Problem 11: What is the remainder after dividing 3^{50} by 7?
Solution: By Fermat’s Little theorem we have $3^6 \equiv 1$ mod 7, therefore by property $5''$ we get $3^{6 \cdot 8} \equiv 1^8 \equiv 1$ mod 7, therefore $3^{50} \equiv 9 \equiv 2$ mod 7.

6