Section 6.5 - The Definite Integral
DEFINITION: A function f is said to be integrable on a finite interval [a, b] if the limit

max Az —0

lim Z f(zr) Az,
k=1

exists and does not depend on the choice of the partitions or on the choice of the numbers x} in the
subintervals. When this is the case we denote the limit by the symbol
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which is called the definite integral of f from a to b. The numbers a and b are called the lower limit
of integration and the upper limit of integration, respectively, and f(z) is called the integrand.

EXAMPLE: Let f(z) =1, then f is integrable on [a,b] and
b
/ f(x)dx =b—a.

PROOF: We have

n
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therefore
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lim Z flzp)Azy = lim (b—a)=b—a.
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THEOREM: If a function f is continuous on an interval [a, b], then f is integrable on [a, b].

THEOREM (The Fundamental Theorem Of Calculus): If f is continuous on [a,b] and F is any
antiderivative of f on [a,b], then

b
/ f(x)dz = F(b) — F(a)

DEFINITION: A function F' is called an antiderivative of a function f on a given interval I if
F'(xz) = f(z) for all  in the interval.

EXAMPLE: If f(x) =1, then z, 2+ 1,z — 2,z + 100, ... are antiderivatives of f.

THEOREM: If F(z) is any antideriavtive of f(z) on an interval I, then for any constant C' the function
F(z)+C is also an antiderivative on that interval. Moreover, each antiderivative of f(x) on the interval
I can be expressed in the form F'(z) + C choosing the constant C' appropriately.

NOTATION: Denote
/f(:n)dx =F(x)+C

which is called the indefinite integral.
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DEFINITION:

(a) If a is in the domain of f, we define
/ f(z)dz =0

(b) If f is integrable on [a, b], then we define

/abf(m)dac = _/ba f(z)dzx

THEOREM: If f and g are integrable on [a,b] and if ¢ is a constant, then cf, f + g, and f — g are
integrable on [a, b] and

(a) /bcf(x)dx:c/bf(x)dx
b b
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THEOREM: If f is integrable on a closed interval containing the three numbers a, b, and ¢, then

/abf(:z:)dx:/acf(x)dx+/cbf(x)dx

no matter how the numbers are ordered.

THEOREM:

(a) If f is integrable on [a,b] and f(x) > 0 for all x in [a, b], then
b
/ f(z)dz >0

(b) If f and g are integrable on [a,b] and f(z) > g(z) for all  in [a, b], then

/abf(a:)dx > /abg(ac)dx



