Section 5.5 - Absolute Maxima And Minima

DEFINITION: A function \(f \) is said to have an **absolute maximum** on an interval \(I \) at \(x_0 \) if \(f(x_0) \) is the largest value of \(f \) on \(I \); that is, \(f(x_0) \geq f(x) \) for all \(x \) in the domain of \(f \) that are in \(I \). Similarly, \(f \) is said to have an **absolute minimum** on an interval \(I \) at \(x_0 \) if \(f(x_0) \) is the smallest value of \(f \) on \(I \); that is, \(f(x_0) \leq f(x) \) for all \(x \) in the domain of \(f \) that are in \(I \). If \(f \) has either an absolute maximum or absolute minimum on \(I \) at \(x_0 \), then \(f \) is said to have an **absolute extremum** on \(I \) at \(x_0 \).

THEOREM (Extreme-Value Theorem): If a function \(f \) is continuous on a finite closed interval \([a, b]\), then \(f \) has both an absolute maximum and an absolute minimum on \([a, b]\).

A Procedure for Finding the Absolute Extrema of a Continuous Function \(f \) on a Finite Closed Interval \([a, b]\).

Step 1: Find the critical numbers of \(f \) in \((a, b)\).

Step 2: Evaluate \(f \) at all critical numbers and at the endpoints \(a \) and \(b \).

Step 3: The largest of the values in Step 2 is the absolute maximum value of \(f \) on \([a, b]\) and the smallest value is the absolute minimum.

EXAMPLE: Find the absolute maximum and minimum values of \(f(x) = 6x^{4/3} - 3x^{1/3} \) on the interval \([-1, 1]\), and determine where these values occur.

SOLUTION:

Step 1: Since \(f'(x) = 8x^{1/3} - x^{-2/3} = x^{-2/3}(8x - 1) = \frac{8x - 1}{x^{2/3}} \), there are 2 critical numbers \(x = 0 \) and \(x = \frac{1}{8} \).

Step 2: We now evaluate \(f \) at these critical numbers and at the endpoints \(x = -1 \) and \(x = 1 \). We have:

\[
\begin{align*}
 f(-1) &= 9, \\
 f(0) &= 0, \\
 f\left(\frac{1}{8}\right) &= -\frac{9}{8}, \\
 f(1) &= 3
\end{align*}
\]

Step 3: The largest value is 9 and the smallest value is \(-\frac{9}{8}\). Therefore an absolute maximum of \(f \) on \([-1, 1]\) is 9, occurring at \(x = -1 \) and an absolute minimum of \(f \) on \([-1, 1]\) is \(-\frac{9}{8}\), occurring at \(x = \frac{1}{8} \).

EXAMPLE: Find the absolute maximum and minimum values of \(f(x) = 2x^3 - 15x^2 + 36x \) on the interval \([1, 5]\), and determine where these values occur.

SOLUTION:

Step 1: Since \(f'(x) = 6x^2 - 30x + 36 = 6(x - 2)(x - 3) \), there are 2 critical numbers \(x = 2 \) and \(x = 3 \).

Step 2: We now evaluate \(f \) at these critical numbers and at the endpoints \(x = 1 \) and \(x = 5 \). We have:

\[
\begin{align*}
 f(1) &= 23, \\
 f(2) &= 28, \\
 f(3) &= 27, \\
 f(5) &= 55
\end{align*}
\]

Step 3: The largest value is 55 and the smallest value is 23. Therefore an absolute maximum of \(f \) on \([1, 5]\) is 55, occurring at \(x = 5 \) and an absolute minimum of \(f \) on \([1, 5]\) is 23, occurring at \(x = 1 \).
EXAMPLE: Determine whether \(f(x) = 3x^4 + 4x^3 \) has any absolute extrema.

SOLUTION:

Step 1: Since \(f'(x) = 12x^3 + 12x^2 = 12x^2(x + 1) \), there are 2 critical numbers \(x = 0 \) and \(x = -1 \).

Step 2: We now evaluate \(f \) at these critical numbers: \(f(0) = 0, f(-1) = -1 \). Also, we find the following limits:
\[
\lim_{x \to +\infty} f(x) = +\infty, \quad \lim_{x \to -\infty} f(x) = +\infty.
\]

Step 3: The smallest value is \(-1\). Therefore an absolute minimum of \(f \) on \((-\infty, +\infty)\) is \(-1\), occurring at \(x = -1 \).

EXAMPLE: Determine whether \(f(x) = \frac{1}{x^2 - x} \) has any absolute extrema on the interval \((0, 1)\). If so, find them and state where they occur.

SOLUTION:

Step 1: We have
\[
f'(x) = -\frac{2x - 1}{(x^2 - x)^2}.
\]
We see that \(f'(x) \) equals zero at \(x = \frac{1}{2} \) and does not exist at \(x = 0 \) and \(x = 1 \). But the last two points are not from \((0, 1)\). Therefore the only critical number is \(x = \frac{1}{2} \).

Step 2: We now evaluate \(f \) at this critical number:
\[
f\left(\frac{1}{2}\right) = -4
\]

Also, we find the following limits:
\[
\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{x^2 - x} = \lim_{x \to 0^+} \frac{1}{x(x - 1)} = -\infty,
\]
\[
\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{1}{x^2 - x} = \lim_{x \to 1^-} \frac{1}{x(x - 1)} = -\infty.
\]

Step 3: The largest value is \(-4\). Therefore an absolute maximum of \(f \) on \((0, 1)\) is \(-4\), occurring at \(x = \frac{1}{2} \).

Section 5.6 - Applied Maximum And Minimum Problems

PROBLEM: A garden is to be laid out in a rectangular area and protected by a chicken wire fence. What is the largest possible area of the garden if only 100 running feet of chicken wire is available for the fence?

PROBLEM: An open box is to be made from a 16-inch by 30-inch piece of cardboard by cutting out squares of equal size from the four corners and bending up the sides. What size should the squares be to obtain a box with the largest volume?

PROBLEM: Find the radius and height of the right circular cylinder of the largest volume that can be inscribed in a right circular cone with radius 6 inches and the height 10 inches.

PROBLEM: A closed cylindrical can is to hold 1 liter (1000 cm\(^3\)) of liquid. How should we choose the height and radius to minimize the amount of material needed to manufacture the can?