Weeks 
Dates 
Sections 
Handouts 
Homework

Due Dates 
Mandatory 
Recommended 
1

Aug 30, Sep 1

Section 1.1 
Fundamental
Operations with Vectors

4(b), 5(d), 8(d), 9 
120

Sep 8

Section 1.2 
The
Dot Product

2, 3, 10, 15(b)

120

2

Sep 6, 8 
Section 1.3 
An
Introduction to Proof Techniques

1(a), 2(a), 3, 4,
6(b), 12, 13, 22, 23

17, 1117, 2124

Sep
15

3

Sep 11, 13, 15 
Section 1.4

Fundamental
Operations with Matrices

4, 5(a)(c), 13

113, 15

Sep 22

Section 1.5 
Matrix
Multiplication

6, 13, 21, 22

125, 31

Section 2.1

Solving
Linear Systems Using Gaussian Elimination

1(d), 5, 10

111

4

Sep 18, 20,
22 
Section 2.2

GaussJordan
Row Reduction and Reduced Row Echelon Form

2(d), 5(d), 7(b),
11(a),(c),(d), 13

114

Sep 29

Section 2.3

Equivalent
Systems, Rank, and Row Space

8(d), 9(b), 16, 18

122

5

Sep 25, 27,
29

Section 2.4

Inverses
of Matrices

4(b), 9, 18

122

Oct 6

Section 3.1

Introduction
to Determinants

8, 11(b), 16(a)

118

Section 3.2

Determinants
and Row Reduction

2(d), 4(b), 7

116

6

Oct 2, 4, 6 
Section 3.3 
Further
Properties of the Determinant 
4(b), 6(b), 8(a),
10, 12

122

Oct 13

Section 3.4

Eigenvalues
and Diagonalization 
3(f), 5(b), 11, 17

120, 24

7

Oct 9, 11 
Section 4.1 
Introduction
to Vector Spaces 
24, 6, 7, 9, 10,
15, 18

120

Oct
20

Oct 13

Sections
1.11.5, 2.12.4, 3.13.4

MIDTERM 1 



8

Oct
16, 18, 20

Section 4.2 
Subspaces 
1(i), 2(d), 3(d),
6, 11

122

Oct 27

Section 4.3 
Span 
2(b), 3(b), 9, 10,
12, 15, 19

129

9

Oct 23,
25, 27

Section 4.4 
Linear Independence 


Nov 3

Section 4.5 
Basis and Dimension 


10

Oct 30,
Nov 1, 3

Section 4.6 
Constructing Special Bases 


Nov 10

Section 4.7 
Coordinatization 


11

Nov
6, 8

Section 5.1 
Introduction to Linear
Transformations 


Nov
17

Nov
10

Sections
4.14.7 
MIDTERM 2 



12

Nov 13,
15, 17

Section 5.2 
The Matrix of a Linear
Transformations 


Dec 1

Section 5.3 
The Dimension Theorem 


13

Nov 20 
Section 5.4 
OnetoOne and Onto Linear
Transformations 


Dec
1 
Nov
2225 
Thanksgiving
holidays 



14

Nov
27, 29, Dec 1

Section 5.5 
Isomorphism 


Dec 8

Section 5.6 
Diagonalization of Linear
Operators 


15

Dec 4, 6,
8 
Section 6.1

Orthogonal Bases and the
GramSchmidt Process



Dec 11 
Section 6.2 
Orthogonal Complements



16

Dec 11

Section 6.3

Orthogonal Diagonalization




17

Dec
15 (Fri) 2:005:00pm 
Cumulative

FINAL EXAM




