Weeks 
Dates 
Sections 
Handouts 
1

Aug 24 
Section 1.1 
Vectors
in two and threedimensional space 
Aug 26

Section 1.2 
The
inner product, length, and distance

2

Aug 29

Section 1.3 
Matrices,
determinants, and the cross product

Aug 31

Section 1.4

Cylindrical
and spherical coordinates

Sep 2

Section 1.5 
ndimensional
Euclidean space 
3

Sep 7

Section 2.1

The
geometry of realvalued functions

Sep 9

Section 2.2

Limits
and continuity + Examples

4

Sep 12

Section 2.3

Differentiation

Sep 14

Section 2.4

Introduction
to paths

Sep 16

Section 2.5

Properties
of the derivative

5

Sep 19

Section 2.6

Gradients
and directional derivatives

Sep 21

Section 3.1

Iterated
partial derivatives

Sep 23 
Sections
1.11.5, 2.12.6

MIDTERM 1 
6

Sep 26 
Section 3.2

Taylor's
theorem + Introduction

Sep 28

Section 3.3

Extrema
of realvalued functions

Sep 30 
7

Oct 3

Section 3.4

Constrained
extrema and Lagrange multipliers

Oct 5

Section 3.5

The
implicit function theorem

Oct 7

Section 4.1

Acceleration
and Newton's Second Law

8

Oct 10

Section 4.2

Arc
length

Oct 12

Section 4.3

Vector
fields

Oct 14

Section 4.4

Divergence
and curl 1, 2

9

Oct 17

Section 5.1

Introduction

Oct 19

Section 5.2

The
double integral over a rectangle

Oct 21

Section 5.3

The
double integral over more general regions

10

Oct 24

Section 5.4

Changing
the order of integration

Oct 26

Section 5.5

The
triple integral

Oct 28

Section 6.1

The
geometry of maps

11

Oct 31

Section 6.2

The
change of variables theorem

Nov 2

Section 6.3

Applications
of double, triple integrals

Nov 4 
Sections
3.13.5, 4.14.4, 5.15.5

MIDTERM 2 
12

Nov 7, 9,
11

Section 7.1

The
path integral 1, 2

Section 7.2

Line
integrals

13

Nov 14

Section 7.3

Parametrized
surfaces

Nov 16

Section 7.4

Area
of a surface

Nov 18

Section 7.5

Integrals
of scalar functions over surfaces

14

Nov 21

Section 7.6

Surface
integrals of vector functions

Nov 2326 
Thanksgiving
holidays 
15

Nov 28

Section 8.1

Green's
theorem 1, 2

Nov 30

Section 8.2

Stokesâ€™
theorem 1, 2

Dec 2

Section 8.3

Conservative
fields

16

Dec 5

Section 8.4

Gaussâ€™
theorem 1, 2

17

Dec
13 (Tue) 9:0012:00

Cumulative

FINAL EXAM
