
Phase Portraits of Linear Systems

In this section we present a complete picture of all orbits of the linear differential equation

ẋ = Ax, x =

[
x1

x2

]

, A =

[
a b

c d

]

(1)

This picture is called a phase portrait, and it depends almost completely on the eigenvalues of the matrix
A. It also changes drastically as the eigenvalues of A change sign or become imaginary.

When analyzing equation (1), it is often helpful to visualize a vector

x =

[
x1

x2

]

in R
2 as a direction, or directed line segment, in the plane. Let

x =

[
x1

x2

]

be a vector in R
2 and draw the directed line segment ~x from the point (0, 0) to the point (x1, x2), as in

Figure 1a. This directed line segment is parallel to the line through (0, 0) with direction numbers x1, x2

respectively. If we visualize the vector x as being this directed line segment ~x, then we see that the vectors
x and cx are parallel if c is positive, and antiparallel if c is negative. We can also give a nice geometric
interpretation of vector addition. Let x and y be two vectors in R

2. Draw the directed line segment ~x,
and place the vector ~y at the tip of ~x. The vector ~x+ ~y is then the composition of these two directed line
segments (see Figure 2). This construction is known as the parallelogram law of vector addition.

We are now in a position to derive the phase portraits of (1). Let λ1 and λ2 denote the two eigenvalues of
A. We distinguish the following cases.
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1. λ2 < λ1 < 0. Let v1 and v2 be eigenvectors of
A with eigenvalues λ1 and λ2 respectively. In the
x1 − x2 plane we draw the four half-lines l1, l

′

1
, l2,

and l′
2
, as shown in Figure 3. The rays l1 and l2 are

parallel to v1 and v2, while the rays l′
1
and l′

2
are

parallel to −v1 and −v2. In this case, the phase
portrait of (1) has the form described in Figure 3.

The distinguishing feature of this phase portrait
is that every orbit, with the exception of a single
line, approaches the origin in a fixed direction (if
we consider the directions v1 and −v1 equivalent).
In this case we say that the equilibrium solution
x(t) = 0 of (1) is a stable node.

REMARK: The orbit of every solution x(t) of (1) approaches the origin x1 = x2 = 0 as t approaches
infinity. However, this point does not belong to the orbit of any nontrivial solution x(t).

1′. 0 < λ1 < λ2. The phase portrait of (1) in this case is exactly the same as Figure 3, except that the
direction of the arrows is reversed. Hence, the equilibrium solution x(t) = 0 of (1) is an unstable node if
both eigenvalues of A are positive.

EXAMPLE: Draw the phase portrait of the linear equation

ẋ = Ax =

[
−2 −1

4 −7

]

x (2)

Solution: It is easily verified that

v1 =

[
1

1

]

and v2 =

[
1

4

]

are eigenvectors of A with eigenvalues−3 and−6, respectively, and x =

[

c1e
−3t + c2e

−6t

c1e
−3t + 4c2e

−6t

]

(see Appendix

I). Therefore, x = 0 is a stable node of (2), and the phase portrait of (2) has the form described in Figure
7. The half-line l1 makes an angle of 45◦ with the x1-axis, while the half-line l2 makes an angle of θ degrees
with the x1-axis, where tan θ = 4.
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2. λ1 = λ2 < 0. In this case, the phase portrait of (1) depends on whether A has one or two linearly
independent eigenvectors.

(a) Suppose that A has two linearly independent eigenvectors v1 and v2 with eigenvalue λ < 0. In this
case, the phase portrait of (1) has the form described in Figure 4a. That is, the orbit of every solution
x(t) of (1) is a half-line. Moreover, the set of vectors {c1v

1+ c2v
2}, for all choices of c1 and c2 cover every

direction in the x1 − x2 plane, since v1 and v2 are linearly independent.

(b) Suppose that A has only one linearly independent eigenvector v, with eigenvalue λ. In this case, the
phase portrait of (1) has the form described in Figure 4b. That is, every solution x(t) of (1) approaches
(
0

0

)
as t approaches infinity. Moreover, the tangent to the orbit of x(t) approaches ±v (depending on the

sign of c2) as t approaches infinity.

2′. λ1 = λ2 > 0. The phase portraits of (1) in the cases (2a)′ and (2b)′ are exactly the same as Figures 4a
and 4b, except that the direction of the arrows is reversed.

3. λ1 < 0 < λ2. Let v1 and v2 be eigenvectors of
A with eigenvalues λ1 and λ2 respectively. In the
x1 − x2 plane we draw the four half-lines l1, l

′

1
, l2,

and l′
2
; the half-lines l1 and l2 are parallel to v

1 and
v2, while the half-lines l′

1
and l′

2
are parallel to −v1

and −v2. In this case, the phase portrait of (1) has
the form described in Figure 5. This phase portrait
resembles a “saddle” near x1 = x2 = 0. For this
reason, we say that the equilibrium solution x(t) =
0 of (1) is a saddle point if the eigenvalues of A have
opposite sign.

EXAMPLE: Draw the phase portrait of the linear equation

ẋ = Ax =

[
1 −3

−3 1

]

x (3)

Solution: It is easily verified that v1 =

[
1

1

]

and v2 =

[
−1

1

]

are eigenvectors of A with eigenvalues −2
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and 4, respectively and

x =

[
c1e

−2t + c2e
4t

c1e
−2t − c2e

4t

]

Therefore, x = 0 is a saddle point of (3), and its phase portrait has the form described in Figure 8. The
half-line l1 makes an angle of 45◦ with the x1-axis, and the half-line l2 is at right angles to l1.

4. λ1 = α + iβ, λ2 = α− iβ, β 6= 0. We distinguish the following cases.

(a) α = 0. In this case, the phase portrait of (1) has the form described in Figure 6a. For this reason, we
say that the equilibrium solution x(t) = 0 of (1) is a center when the eigenvalues of A are pure imaginary.

The direction of the arrows in Figure 6a must be determined from the differential equation (1). The
simplest way of doing this is to check the sign of ẋ2 when x2 = 0. If ẋ2 greater than zero for x2 = 0 and
x1 > 0 (that is, if c in the matrix A is > 0), then all solutions x(t) of (1) move in the counterclockwise
direction; if ẋ2 is less than zero for x2 = 0 and x1 > 0 (that is, if c in A is < 0), then all solutions x(t) of
(1) move in the clockwise direction.

(b) α < 0. In this case, the phase portrait of (1) has the form described in Figure 6b, and we say that the
equilibrium solution x(t) = 0 of (1) is a stable focus. The direction of rotation of the spiral in Figure 6b
must be determined directly from the differential equation (1). That is, if c in A is > 0, then all nontrivial
orbits of (1) spiral into the origin in the counterclockwise direction. Otherwise, all nontrivial orbits of (1)
spiral into the origin in the clockwise direction.

(c) α > 0. In this case, all orbits of (1) spiral away from the origin as t approaches infinity (see Figure 6c),
and the equilibrium solution x(t) = 0 of (1) is called an unstable focus. Again, the direction of rotation of
the spiral in Figure 6c must be determined directly from the differential equation (1).
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THEOREM 4: Suppose that u = 0 is either a node, saddle, or focus point of the differential equation
u̇ = Au. Then, the phase portrait of the differential equation ẋ = f(x), in a neighborhood of x = x0, has
one of the forms described in Figures 3, 5, and 6 (b and c), depending as to whether u = 0 is a node,
saddle, or focus.

EXAMPLE: Draw the phase portrait of the linear equation

ẋ = Ax =

[
−1 1

−1 −1

]

x (4)

Solution: The eigenvalues of A are −1± i and

x =

[
e−t(c1 sin t+ c2 cos t)

e−t(c1 cos t− c2 sin t)

]

Since α = −1 < 0, the equilibrium solution x = 0 is a stable focus of (4) and every nontrivial orbit of
(4) spirals into the origin as t approaches infinity. To determine the direction of rotation of the spiral,
we observe that ẋ2 = −x1 when x2 = 0. Thus, ẋ2 negative for x1 > 0 and x2 = 0. Consequently, all
nontrivial orbits of (4) spiral into the origin in the clockwise direction, as shown in Figure 9. In short,
since c = −1 < 0 in A, all nontrivial orbits of (4) spiral into the origin in the clockwise direction.
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Appendix I

Note that system (2) can be rewritten as
ẋ = Ax

where

x =

[

x1

x2

]

and A =

[

−2 −1

4 −7

]

The characteristic polynomial of the matrix A is

p(λ) = det(A− λI) =

∣
∣
∣
∣
∣

−2− λ −1

4 −7− λ

∣
∣
∣
∣
∣

= (−2− λ)(−7− λ)− (−1)(4) = 14 + 2λ+ 7λ+ λ2 + 4 = λ2 + 9λ+ 18

so the eigenvalues of A are λ = −3 and λ = −6.

(a) Let λ = −3. We use row operations:

[

−2− λ −1 0

4 −7− λ 0

]

=

[

1 −1 0

4 −4 0

]

∼

[

1 −1 0

0 0 0

]

︸ ︷︷ ︸

Reduced Echelon Form

hence
x1 − x2 = 0 =⇒ x1 = x2

We get

x =

[

x1

x2

]

=

[

x2

x2

]

= x2

[

1

1

]

is the eigenvector of A, corresponding to λ = −3. Consequently,

ce−3t

[

1

1

]

is a solution of the differential equation for any constant c. For simplicity, we take

x1(t) = e−3t

[

1

1

]

(b) Let λ = −6. We use row operations:

[

−2− λ −1 0

4 −7− λ 0

]

=

[

4 −1 0

4 −1 0

]

∼

[

4 −1 0

0 0 0

]

︸ ︷︷ ︸

Echelon Form

∼

[

1 −1/4 0

0 0 0

]

︸ ︷︷ ︸

Reduced Echelon Form

hence

x1 −
1

4
x2 = 0 =⇒ x1 =

1

4
x2
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We get

x =

[

x1

x2

]

=





1

4
x2

x2



 =
1

4
x2

[

1

4

]

is the eigenvector of A, corresponding to λ = −6. Consequently,

ce−6t

[

1

4

]

is a solution of the differential equation for any constant c. For simplicity, we take

x1(t) = e−6t

[

1

4

]

The solutions x1(t) and x2(t) must be linearly independent, since A has distinct eigenvalues. Therefore,
every solution x(t) must be of the form

x(t) = c1e
−3t

[

1

1

]

+ c2e
−6t

[

1

4

]

=

[

c1e
−3t + c2e

−6t

c1e
−3t + 4c2e

−6t

]
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