
Fundamental Operations with Vectors

aa
Definition A real n-vector is an ordered sequence of n real numbers (sometimes

referred to as an ordered n-tuple of real numbers). The set of all n-vectors is

denoted Rn.

For example, R2 is the set of all 2-vectors (ordered 2-tuples = ordered pairs) of real numbers; it includes
[2,−4] and [−6.2, 3.14]. R3 is the set of all 3-vectors (ordered 3-tuples = ordered triples) of real numbers; it
includes [2,−3, 0] and [−

√
2, 42.7, π]. R4 is the set of all 4-vectors (ordered 4-tuples = ordered quadruples)

of real numbers; it includes [−1,−7, 0, 5] and [0.5,−19.1, 0, 100].

The vector in R
n that has all n entries equal to zero is called the zero n-vector. In R

2 and R
3, the zero

vectors are [0, 0] and [0, 0, 0], respectively.

Two vectors in R
n are equal if and only if all corresponding entries (called coordinates) in their n-tuples

agree. That is, [x1, x2, . . . , xn] = [y1, y2, . . . , yn] if and only if x1 = y1, x2 = y2, . . ., and xn = yn.

A single number (such as −10 or 2.6) is often called a scalar to distinguish it from a vector.

Geometric Interpretation of Vectors

Vectors in R
2 frequently represent movement from one

point to another in a coordinate plane. From initial
point (3, 2) to terminal point (1, 5), there is a net de-
crease of 2 units along the x-axis and a net increase of 3
units along the y-axis. A vector representing this change
would thus be [−2, 3].

Vectors can be positioned at any desired starting point.
For example, [−2, 3] could also represent a movement
from initial point (9,−6) to terminal point (7,−3).
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Vectors in R
3 have a similar geometric interpretation: a 3-vector is used to represent movement between

points in three-dimensional space. For example, [2,−2, 6] can represent movement from initial point
(2, 3,−1) to terminal point (4, 1, 5).
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Length of a Vector

Recall the distance formula in the plane; the distance
between two points (x1, y1) and (x2, y2) is

d =
√

(x2 − x1)2 + (y2 − y1)2

This formula arises from the Pythagorean Theorem for
right triangles. The 2-vector between the points is
[a1, a2], where a1 = x2 − x1 and a2 = y2 − y1, so

d =
√

a2
1
+ a2
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Definition The length (also known as the norm or magnitude) of a vector a !

[a1,a2, . . . ,an] in R
n is ‖a‖ !

√

a
2
1 "a

2
2 " · · · "a2

n
.

EXAMPLE: The length of the vector a = [4,−3, 0, 2] is given by

‖a‖ =
√

42 + (−3)2 + 02 + 22 =
√
16 + 9 + 4 =

√
29

Definition Any vector of length 1 is called a unit vector.

√

Scalar Multiplication and Parallel Vectors

aa
Definition Let x " [x1, x2, . . . , xn] be a vector in R

n, and let c be any scalar (real

number).Then cx, the scalar multiple of x by c, is the vector [cx1,cx2, . . . ,cxn].

2

21

2

4

6

8

10

12

14

16

4 6 8 10 12 14

2224

22

24

26

2628210212214

23x

2x

x

2

216

210

28

x

2



Theorem 1.1 Let x ∈ Rn, and let c be any real number (scalar). Then ‖cx‖ !

|c| ‖x‖. That is, the length of cx is the absolute value of c times the length of x.

Proof: Let x = [x1, x2, . . . , xn], then cx = [cx1, cx2, . . . , cxn]. Therefore

‖cx‖ =
√

(cx1)2 + . . .+ (cxn)2 =
√

c2(x2

1
+ . . .+ x2

n
)

=
√
c2
√

x2

1
+ . . .+ x2

n
) = |c|

√

x2

1
+ . . .+ x2

n
= |c|‖x‖ �

Definition Two nonzero vectors x and y in Rn are in the same direction if and

only if there is a positive real number c such that y ! cx. Two nonzero vectors x

and y are in opposite directions if and only if there is a negative real number c

such that y ! cx. Two nonzero vectors are parallel if and only if they are either

in the same direction or in the opposite direction.

Corollary 1.2 If x is a nonzero vector in Rn, then u ! (1/‖x‖)x is a unit vector in the

same direction as x.

Proof: Since 1/‖x‖ is positive, x and u have the same direction. We have

‖u‖ =

∥

∥

∥

∥

1

‖x‖x
∥

∥

∥

∥

=
1

‖x‖‖x‖ = 1

Hence u is a unit vector. �

x

u

x1 ,
))x))

x2 ,
))x))

x3

[x1, x2, x3]

))x))

REMARK: The process of “dividing” a vector by its length to obtain a unit vector in the same direction
is called normalizing the vector.

EXAMPLE: Consider the vector [2, 3,−1, 1] in R
4. Because

‖[2, 3,−1, 1]‖ =
√
15

normalizing [2, 3,−1, 1] gives a unit vector u in the same direction as [2, 3,−1, 1], which is

u =

(

1√
15

)

[2, 3,−1, 1] =

[

2√
15

,
3√
15

,
−1√
15

,
1√
15

]
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Addition and Subtraction with Vectors

aa
Definition Let x  [x1, x2, . . . , xn] and y  [y1, y2, . . . , yn] be vectors in Rn. Then

x!y, the sum of x and y, is the vector [x1! y1,x2! y2, . . . ,xn! yn] in R
n.

Vectors are added by summing their respective coordinates. For example, if

x = [2,−3, 5] and y = [−6, 4,−2]

then
x+ y = [2 + (−6), −3 + 4, 5 + (−2)] = [−4, 1, 3]

Vectors cannot be added unless they have the same number of coordinates.

Let −y denote the scalar multiple −1y. We can now define subtraction of vectors in a natural way: if
x and y are both vectors in R

n, let x− y be the vector x+ (−y).
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Fundamental Properties of Addition and Scalar Multiplication

Theorem 1.3 Let x ! [x1, x2, . . . , xn] ,y ! [y1, y2, . . . , yn], and z! [z1, z2, . . . , zn] be

any vectors in Rn, and let c and d be any real numbers (scalars). Let 0 represent the

zero vector in Rn. Then

(1) x"y ! y"x Commutative Law of Addition

(2) x" (y" z)! (x"y)" z Associative Law of Addition

(3) 0"x ! x"0! x Existence of Identity Element for Addition

(4) x" ( x)! ( x)"x ! 0 Existence of Inverse Elements for Addition

(5) c(x"y)! cx" cy Distributive Laws of Scalar Multiplication

(6) (c"d)x ! cx"dx over Addition

(7) (cd)x ! c(dx) Associativity of Scalar Multiplication

(8) 1x ! x Identity Property for Scalar Multiplication

Theorem 1.4 Let x be a vector in Rn, and let c be a scalar. If cx  0, then either c  0

or x  0.
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Linear Combinations of Vectors

aa
Definition Let v1,v2, . . . ,vk be vectors in R

n. Then the vector v is a linear com-

bination of v1,v2, . . . ,vk if and only if there are scalars c1,c2, . . . ,ck such that

v  c1v1! c2v2! · · ·! ckvk.

Thus, a linear combination of vectors is a sum of scalar multiples of those vectors. For example,the vector
[−2, 8, 5, 0] is a linear combination of

[3, 1,−2, 2], [1, 0, 3,−1], and [4,−2, 1, 0]

because
2[3, 1,−2, 2] + 4[1, 0, 3,−1] + (−3)[4,−2, 1, 0] = [−2, 8, 5, 0]

Note that any vector in R
3 can be expressed in a unique way as a linear combination of

i = [1, 0, 0], j = [0, 1, 0], and k = [0, 0, 1]

For example,
[3,−2, 5] = 3[1, 0, 0] + (−2)[0, 1, 0] + 5[0, 0, 1] = 3i− 2j+ 5k

In general,
[a, b, c] = ai+ bj+ ck

Also, every vector in R
n can be expressed as a linear combination of the standard unit vectors

e1 = [1, 0, 0, . . . , 0], e2 = [0, 1, 0, . . . , 0], . . . , en = [0, 0, 0, . . . , 1]

since

[a1, a2, . . . , an] = [a1, 0, 0, . . . , 0] + [0, a2, 0, . . . , 0] + . . .+ [0, 0, 0, . . . , an]

= a1[1, 0, 0, . . . , 0] + a2[0, 1, 0, . . . , 0] + . . .+ an[0, 0, 0, . . . , 1]

= a1e1 + a2e2 + . . .+ anen

One helpful way to picture linear combinations of the vectors v1,v2, . . . ,vk is to remember that each
vector represents a certain amount of movement in a particular direction. When we combine these vectors
using addition and scalar multiplication, the endpoint of each linear combination vector represents a
“destination” that can be reached using these operations. For example, the linear combination

w = 2[1, 3]− 1

2
[4,−5] + 3[2,−1] =

[

6,
11

2

]

is the destination reached by traveling in the direction of [1, 3], but traveling twice its length, then traveling
in the direction opposite to [4,−5], but half its length, and finally traveling in the direction [2,−1], but
three times its length (see Figure (a) below).

We can also consider the set of all possible destinations that can be reached using linear combinations
of a certain set of vectors. For example, the set of all linear combinations in R

3 of v1 = [2, 0, 1] and
v2 = [0, 1,−2] is the set of all vectors (beginning at the origin) with endpoints lying in the plane through
the origin containing v1 and v2 (see Figure (b) below).
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Physical Applications of Addition and Scalar Multiplication

Addition and scalar multiplication of vectors are often used to
solve problems in elementary physics. Recall the trigonometric
fact that if v is a vector in R

2 forming an angle of θ with the
positive x-axis, then

v = [‖v‖ cos θ, ‖v‖ sin θ] ))v)) sin �

))v)) cos �

�

v

y

x

EXAMPLE: Suppose a man swims 5 km/hr in calm water. If he is swimming toward the east in a wide
stream with a northwest current of 3 km/hr, what is his resultant velocity (net speed and direction)?

Solution: The velocities of the swimmer and current are shown as vectors in the Figure below, where we
have, for convenience, placed the swimmer at the origin. Now,

v1 = [5, 0] and v2 = [3 cos 135◦, 3 sin 135◦] =

[

−3

√
2

2
, 3

√
2

2

]

Thus, the total (resultant) velocity of the swimmer is the sum of these velocities, v1 + v2, which is
[

5− 3

√
2

2
, 3

√
2

2

]

≈ [2.88, 2.12]

Hence, each hour the swimmer is traveling about 2.9 km east and 2.1 km north. The resultant speed of
the swimmer is

∥

∥

∥

∥

∥

[

5− 3

√
2

2
, 3

√
2

2

]∥

∥

∥

∥

∥

≈ 3.58 km/hr
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EXAMPLE (Newton’s Second Law): Newton’s famous Second Law of Motion asserts that the sum,
f , of the vector forces on an object is equal to the scalar multiple of the mass m of the object times the
vector acceleration a of the object; that is,

f = ma

For example, suppose a mass of 5 kg (kilograms) in a three-dimensional coordinate system has two forces
acting on it: a force f1 of 10 newtons in the direction of the vector [−2, 1, 2] and a force f2 of 20 newtons
in the direction of the vector [6, 3,−2]. What is the acceleration of the object?

Solution: We must first normalize the direction vectors [−2, 1, 2] and [6, 3,−2] so that their lengths do not
contribute to the magnitude of the forces f1 and f2. Therefore,

f1 = 10
[−2, 1, 2]

‖[−2, 1, 2]‖ and f2 = 20
[6, 3,−2]

‖[6, 3,−2]‖

The net force on the object is
f = f1 + f2

Thus, the net acceleration on the object is

a =
1

m
f =

1

m
(f1 + f2) =

1

5

(

10
[−2, 1, 2]

‖[−2, 1, 2]‖ + 20
[6, 3,−2]

‖[6, 3,−2]‖

)

which equals
2

3
[−2, 1, 2] +

4

7
[6, 3,−2] =

[

44

21
,
50

21
,
4

21

]

The length of a is approximately 3.18, so pulling out a factor of 3.18 from each coordinate, we can
approximate a as 3.18[0.66, 0.75, 0.06], where [0.66, 0.75, 0.06] is a unit vector. Hence, the acceleration is
about 3.18 m/sec2 in the direction [0.66, 0.75, 0.06].
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