Fundamental Operations with Vectors

Definition A real n-vector is an ordered sequence of 7z real numbers (sometimes
referred to as an ordered n-tuple of real numbers). The set of all n-vectors is
denoted R”.

For example, R? is the set of all 2-vectors (ordered 2-tuples = ordered pairs) of real numbers; it includes
2, —4] and [—6.2, 3.14]. R? is the set of all 3-vectors (ordered 3-tuples = ordered triples) of real numbers; it
includes [2, —3, 0] and [—/2,42.7, 7]. R*is the set of all 4-vectors (ordered 4-tuples = ordered quadruples)
of real numbers; it includes [—1,—7,0,5] and [0.5, —19.1, 0, 100].

The vector in R™ that has all n entries equal to zero is called the zero n-vector. In R? and R?, the zero
vectors are [0, 0] and [0, 0, 0], respectively.

Two vectors in R" are equal if and only if all corresponding entries (called coordinates) in their n-tuples
agree. That is, [x1, o, ..., x,] = [Y1, Y2, ..., yn] if and only if z1 = y1, 22 = 4o, ..., and z, = y,.

A single number (such as —10 or 2.6) is often called a scalar to distinguish it from a vector.

Geometric Interpretation of Vectors

Vectors in R? frequently represent movement from one y

point to another in a coordinate plane. From initial

point (3,2) to terminal point (1,5), there is a net de- I 0.5
15 ,

crease of 2 units along the z-axis and a net increase of 3
units along the y-axis. A vector representing this change I Vector [-2, 3]
would thus be [—2, 3]. 1

w

12 3,2)
Vectors can be positioned at any desired starting point. 14
For example, [—2, 3] could also represent a movement — e X
from initial point (9, —6) to terminal point (7, —3). 7/ 6-5-4-3-2-1 | 1 2345867

Vectors in R? have a similar geometric interpretation: a 3-vector is used to represent movement between
points in three-dimensional space. For example, [2, —2, 6] can represent movement from initial point
(2,3,—1) to terminal point (4,1,5).
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Length of a Vector

Recall the distance formula in the plane; the distance y
between two points (xy, ;) and (xg,ys) is
(X2, ¥o)
d=/(xs—21)2 + (42 — 11)? e e B
DH=Yo" W
This formula arises from the Pythagorean Theorem for Ly, Ae
right triangles. The 2-vector between the points is (i) TR
la1, as|, where a; = x9 — 21 and as = ys — y1, SO : ' .
X4 X2
d=/a? + a3

Definition The length (also known as the norm or magnitude) of a vector a =

lai,az,...,a,) inR"is ||a|| = \/a? + a5+ - + a2.

EXAMPLE: The length of the vector a = [4, —3,0, 2] is given by

lal| = /42 4+ (=3)2+ 02+ 22 = V16 + 9 + 4 = V29

Definition Any vector of length 1 is called a unit vector.

Scalar Multiplication and Parallel Vectors

Definition Let x = [x1,x2,..., x;,] be a vector in R”, and let ¢ be any scalar (real
number). Then cx, the scalar multiple of x by c,is the vector [cx,cx2, ..., cx,].
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Theorem 1.1 Let x € R”, and let ¢ be any real number (scalar). Then |cx| =
lc] |Ix]|. That is, the length of ¢x is the absolute value of ¢ times the length of x.

Proof: Let x = [x1, %9, ..., 2,], then ¢x = [cxq, cxs, . .., cx,]. Therefore

lex|| = /(cx)2 + ... + (cay)? = \/(32(90% + ...+ a2)

=V a2+ 4 a2) =24 a2 =[x W

Definition Two nonzero vectors x and y in R” are in the same direction if and
only if there is a positive real number ¢ such that y = ¢x. Two nonzero vectors X
and y are in opposite directions if and only if there is a negative real number ¢
such that y = ¢x. Two nonzero vectors are parallel if and only if they are either
in the same direction or in the opposite direction.

Corollary 1.2 If x is a nonzero vector in R”, then u = (1/]|x|)x is a unit vector in the
same direction as x.

Proof: Since 1/||x|| is positive, x and u have the same direction. We have

1 1
lall =l = /Xl =1
[l

[l

Hence u is a unit vector. M

[x1, X0, X3]

Xy Xo X3

X X X
u UXH I x|

REMARK: The process of “dividing” a vector by its length to obtain a unit vector in the same direction
is called normalizing the vector.

EXAMPLE: Consider the vector [2,3, —1,1] in R*. Because
2,3, —1,1]|| = V15
normalizing [2,3, —1, 1] gives a unit vector u in the same direction as [2,3, —1, 1], which is




Addition and Subtraction with Vectors

Definition Let x = [x1,x2,...,x,] and 'y = [y1, 2,..., ¥u] be vectors in R”. Then
x +y,the sum of x and y, is the vector [x] + y1,x2 + y2,...,%, + y,] in R”.

Vectors are added by summing their respective coordinates. For example, if
x = [2,-3,5] and y = [—6,4, —2]

then

Vectors cannot be added unless they have the same number of coordinates.

Let —y denote the scalar multiple —1y. We can now define subtraction of vectors in a natural way: if
x and y are both vectors in R", let x — y be the vector x + (—y).

y
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y X =[xy, Xp] ~y
X1 Y =1[y1, ¥ol - -
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Fundamental Properties of Addition and Scalar Multiplication

Theorem 1.3 Let x =[xy, x2,...,x,], Y = V1, ¥2,-..,¥nl, and z = [z1, 22,..., Z,] be
any vectors in R”, and let ¢ and d be any real numbers (scalars). Let 0 represent the
zero vector in R”. Then

(1) x+y=y+x Commutative Law of Addition

(2) x+(y+z)=(x+y)+z Associative Law of Addition
B)o+x=x+0=x Existence of Identity Element for Addition
(4) x+(—x) = (—x) +x =0 Existence of Inverse Elements for Addition
(5) cx+y) =cx+cy Distributive Laws of Scalar Multiplication
©6) (c+d)x=cx+dx over Addition

(7) (cd)x = c(dx) Associativity of Scalar Multiplication

8) Ix=x Identity Property for Scalar Multiplication

Theorem 1.4 Let x be a vector in R”, and let ¢ be a scalar. If cx = 0, then either ¢ = 0
orx = 0.




Linear Combinations of Vectors

Definition Let vy, v>,..., vz be vectors in R”. Then the vector v is a linear com-
bination of vy,v;,..., v if and only if there are scalars cy,cz,...,c, such that
V =C1V]y t vy + -+ + CpVp.

Thus, a linear combination of vectors is a sum of scalar multiples of those vectors. For example,the vector
[—2,8,5,0] is a linear combination of

3,1,—-2,2], [1,0,3,—1], and [4,—2,1,0]

because
2[3,1,-2,2] +4[1,0,3,—1] + (=3)[4,—2,1,0] = [-2,8, 5, 0]

Note that any vector in R® can be expressed in a unique way as a linear combination of
i=1[1,0,0], j=1[0,1,0l, and k=10,0,1]

For example,
[3,—2,5] = 3[1,0,0] + (—=2)[0,1,0] + 5[0,0,1] = 3i — 2j + 5k

In general,
la,b,c] = ai+ bj + ck

Also, every vector in R" can be expressed as a linear combination of the standard unit vectors

e =1[1,0,0,...,0], e;=][0,1,0,...,0, ..., e,=1[0,0,0,...,1]
since
lai,az,...,a,] =[a1,0,0,...,0] 4+ [0,a2,0,...,0] +...+1[0,0,0,...,a,]
=ay1[1,0,0,...,0] + a2[0,1,0,...,0] + ...+ a,[0,0,0,...,1]
= a1€e1 + ases + ...+ a,en
One helpful way to picture linear combinations of the vectors vy, va,..., vy is to remember that each

vector represents a certain amount of movement in a particular direction. When we combine these vectors
using addition and scalar multiplication, the endpoint of each linear combination vector represents a
“destination” that can be reached using these operations. For example, the linear combination

w = 2[1,3] %[4, 5432, 1] = [6, %}

is the destination reached by traveling in the direction of [1, 3], but traveling twice its length, then traveling

in the direction opposite to [4,—5], but half its length, and finally traveling in the direction [2, —1], but
three times its length (see Figure (a) below).

We can also consider the set of all possible destinations that can be reached using linear combinations
of a certain set of vectors. For example, the set of all linear combinations in R® of v; = [2,0,1] and
vy = [0, 1, —2] is the set of all vectors (beginning at the origin) with endpoints lying in the plane through
the origin containing vy and va (see Figure (b) below).
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Physical Applications of Addition and Scalar Multiplication

Addition and scalar multiplication of vectors are often used to y
solve problems in elementary physics. Recall the trigonometric
fact that if v is a vector in R? forming an angle of # with the
positive x-axis, then

v

. v]| sin 6
= [|Ivllcos®, [[v| sind]

v]| cos 6

EXAMPLE: Suppose a man swims 5 km/hr in calm water. If he is swimming toward the east in a wide
stream with a northwest current of 3 km/hr, what is his resultant velocity (net speed and direction)?

Solution: The velocities of the swimmer and current are shown as vectors in the Figure below, where we
have, for convenience, placed the swimmer at the origin. Now,

2 2
vy =1[5,0] and vs = [3cos135°, 3sin135°] = [—3%, 3%]
Thus, the total (resultant) velocity of the swimmer is the sum of these velocities, vy + va, which is
[5 - 3£ 3£] ~ [2.88,2.12]

Hence, each hour the swimmer is traveling about 2.9 km east and 2.1 km north. The resultant speed of
the swimmer is

[5 3\2_ 3£] ~ 3.58 km /hr
y
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EXAMPLE (Newton’s Second Law): Newton’s famous Second Law of Motion asserts that the sum,
f, of the vector forces on an object is equal to the scalar multiple of the mass m of the object times the
vector acceleration a of the object; that is,

f =ma

For example, suppose a mass of 5 kg (kilograms) in a three-dimensional coordinate system has two forces
acting on it: a force f; of 10 newtons in the direction of the vector [—2,1,2] and a force fy of 20 newtons
in the direction of the vector [6,3, —2]. What is the acceleration of the object?

Solution: We must first normalize the direction vectors [—2,1,2] and [6, 3, —2] so that their lengths do not
contribute to the magnitude of the forces f; and fy. Therefore,

[_27 17 2] [6, 3, —2]
f1 =10 ———— and fo =20
I1=2,1,2]]] © llie. 3, 2]

The net force on the object is
f = f]_ + f2

Thus, the net acceleration on the object is

1 1 1 —-2,1,2 —2
a=—f (f1+f2):g<10||[ ’1’ ] +20 [6’3’_] >

mm
which equals

Z[-2,1,2] + =[6,3, -2 = |—, —, —
72 LA+ 706372 = 50005

The length of a is approximately 3.18, so pulling out a factor of 3.18 from each coordinate, we can
approximate a as 3.18[0.66, 0.75,0.06], where [0.66,0.75,0.06] is a unit vector. Hence, the acceleration is
about 3.18 m/sec? in the direction [0.66,0.75, 0.06].
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