DEFINITION:
A vector space is a nonempty set \(V \) of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following 10 axioms (or rules):

1. The sum of \(\bar{u} \) and \(\bar{v} \), denoted by \(\bar{u} + \bar{v} \), is in \(V \).
2. \(\bar{u} + \bar{v} = \bar{v} + \bar{u} \).
3. \(\bar{u} + (\bar{v} + \bar{w}) = \bar{u} + (\bar{v} + \bar{w}) \).
4. There is a zero vector \(\bar{0} \) in \(V \) such that \(\bar{u} + \bar{0} = \bar{u} \).
5. For each \(\bar{u} \) in \(V \), there is a vector \(-\bar{u} \) in \(V \) such that \(\bar{u} + (-\bar{u}) = \bar{0} \).
6. The scalar multiple of \(\bar{u} \) by \(c \), denoted by \(c\bar{u} \), is in \(V \).
7. \(c(\bar{u} + \bar{v}) = c\bar{u} + c\bar{v} \).
8. \((c + d)\bar{u} = c\bar{u} + d\bar{u} \).
9. \(c(d\bar{u}) = (cd)\bar{u} \).
10. \(1 \cdot \bar{u} = \bar{u} \).

These axioms must hold for all vectors \(\bar{u}, \bar{v}, \) and \(\bar{w} \) in \(V \) and all scalars \(c \) and \(d \).

EXAMPLE:
\(\mathbb{R}^n \) is a vector space. In fact, let
\[
\bar{u} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \bar{v} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \bar{w} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix}
\]
Then
1. \(\bar{u} + \bar{v} \) is in \(V \).
2. \(\bar{u} + \bar{v} = \bar{v} + \bar{u} \).
3. \(\bar{u} + \bar{v} + \bar{w} = \bar{u} + (\bar{v} + \bar{w}) \).
4. There is the zero vector \(\bar{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \) in \(V \) such that \(\bar{u} + \bar{0} = \bar{u} \), since
\[
\bar{u} + \bar{0} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \bar{u}.
\]

EXAMPLE:
The set of all \(n \times m \) matrices, i.e.
\[
\begin{bmatrix}
 x_{11} & \cdots & x_{1m} \\
 x_{21} & \cdots & x_{2m} \\
 \vdots & & \vdots \\
 x_{n1} & \cdots & x_{nm}
\end{bmatrix}
\]
Then
1. \(\bar{u} + \bar{v} \) is in \(V \).
2. \(\bar{u} + \bar{v} = \bar{v} + \bar{u} \).
3. \(\bar{u} + \bar{v} + \bar{w} = \bar{u} + (\bar{v} + \bar{w}) \).
4. There is the zero vector \(\bar{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \) in \(V \) such that \(\bar{u} + \bar{0} = \bar{u} \).
5. For each \(\bar{u} = \begin{bmatrix} x_{11} & \cdots & x_{1m} \\ x_{21} & \cdots & x_{2m} \\ \vdots \\ x_{n1} & \cdots & x_{nm} \end{bmatrix} \) in \(V \), there is the vector \(-\bar{u} = \begin{bmatrix} -x_{11} & \cdots & -x_{1m} \\ -x_{21} & \cdots & -x_{2m} \\ \vdots \\ -x_{n1} & \cdots & -x_{nm} \end{bmatrix} \) in \(V \) such that \(\bar{u} + (-\bar{u}) = \bar{0} \).

6. The scalar multiple of \(\bar{u} \) by \(c \), denoted by \(c\bar{u} \), is in \(V \).

7. \(c(\bar{u} + \bar{v}) = c\bar{u} + c\bar{v} \).

8. \((c + d)\bar{u} = c\bar{u} + d\bar{u} \).

9. \(c(d\bar{u}) = (cd)\bar{u} \).

10. \(1 \cdot \bar{u} = \bar{u} \).

EXAMPLE:

The set \(P_n \) of polynomials of degree at most \(n \): \(\bar{p}(t) = a_n t^n + \ldots + a_2 t^2 + a_1 t + a_0 \) where the coefficients \(a_n, \ldots, a_0 \) and the variable \(t \) are real numbers.

EXAMPLE:

The set consisting of all real-valued functions defined on \(R \).

DEFINITION:

A subspace of a vector space \(V \) is a subset \(H \) of \(V \) that has 3 properties:

1. The zero vector of \(V \) is in \(H \).
2. \(H \) is closed under vector addition. That is, for each \(\bar{u} \) and \(\bar{v} \) in \(H \), the sum \(\bar{u} + \bar{v} \) is in \(H \).
3. \(H \) is closed under multiplication by scalars. That is, for each \(\bar{u} \) in \(H \) and each scalar \(c \), the vector \(c\bar{u} \) is in \(H \).

REMARK:

One can show that a subspace \(H \) of a vector space \(V \) is a vector space.
SOLUTION:

First of all, note that
Span \(\{ \bar{v}_1, \bar{v}_2 \} = \{ \alpha \bar{v}_1 + \beta \bar{v}_2 : \alpha, \beta \in R \} \).
Therefore Span \(\{ \bar{v}_1, \bar{v}_2 \} \) is a subset of \(V \).
Moreover,
1. The zero vector \(\bar{0} \) is in \(H \), since
 \(\bar{0} = 0 \cdot \bar{v}_1 + 0 \cdot \bar{v}_2 \).
2. \(H \) is closed under vector addition.
 In fact, let
 \(\bar{u} = s_1 \bar{v}_1 + s_2 \bar{v}_2, \quad \bar{w} = t_1 \bar{v}_1 + t_2 \bar{v}_2 \).
By Axioms 2, 3, and 8 we have:
 \(\bar{u} + \bar{w} = (s_1 \bar{v}_1 + s_2 \bar{v}_2) + (t_1 \bar{v}_1 + t_2 \bar{v}_2) \)
 \(= (s_1 + t_1) \bar{v}_1 + (s_2 + t_2) \bar{v}_2 \),
therefore \(\bar{u} + \bar{w} \) is in \(H \).
3. Similarly, if \(c \) is any scalar, then by Axioms 7 and 9 we get
 \(c \bar{u} = c(s_1 \bar{v}_1 + s_2 \bar{v}_2) = (cs_1) \bar{v}_1 + (cs_2) \bar{v}_2 \),
therefore \(c \bar{u} \) is also in \(H \).
Thus, \(H \) is a subspace of \(V \).

THEOREM:
If \(\bar{v}_1, \ldots, \bar{v}_p \) are in a vector space \(V \), then
Span \(\{ \bar{v}_1, \ldots, \bar{v}_p \} \) is a subspace of \(V \).