
Wilson’s Theorem and Fermat’s Little Theorem

Wilson’sTheorem

THEOREM 1 (Wilson’s Theorem): (p− 1)! ≡ −1 (mod p) if and only if p is prime.

EXAMPLE: We have

(2− 1)! + 1 = 2

(3− 1)! + 1 = 3

(4− 1)! + 1 = 7

(5− 1)! + 1 = 52

(6− 1)! + 1 = 112

(7− 1)! + 1 = 7 · 103

(8− 1)! + 1 = 712

(9− 1)! + 1 = 61 · 661

(10− 1)! + 1 = 19 · 71 · 269

(11− 1)! + 1 = 11 · 329891

(12− 1)! + 1 = 39916801

(13− 1)! + 1 = 132 · 2834329

(14− 1)! + 1 = 83 · 75024347

(15− 1)! + 1 = 23 · 3790360487

(16− 1)! + 1 = 59 · 479 · 46271341

(17− 1)! + 1 = 17 · 61 · 137 · 139 · 1059511

REMARK: The first proof of Wilson’s Theorem was given by the French mathematician Joseph
Lagrange in 1770. The mathematician after whom the theorem is named, John Wilson, con-
jectured, but did not prove it.

Proof: Suppose p is prime. When p = 2 and p = 3, the Theorem is true (see the Example
above). Now let p be a prime greater than 3. By Theorem 1 from Section 4.2, for each integer
a with 1 ≤ a ≤ p− 1 there is a unique (since (a, p) = 1) inverse ā, 1 ≤ ā ≤ p− 1, with

aā ≡ 1 (mod p)

By Theorem 2 from Section 4.2, the only positive integers less than p that are their own inverses
are 1 and p − 1. Therefore, we can group the integers from 2 to p − 2 into (p − 3)/2 pairs of
integers, with the product of each pair congruent to 1 modulo p. Hence, we have

2 · 3 . . . (p− 3)(p− 2) ≡ 1 (mod p)

We multiply both sides of this congruence by 1 and p− 1 to obtain

(p− 1)! = 1 · 2 · 3 . . . (p− 3)(p− 2)(p− 1) ≡ 1 · (p− 1) ≡ −1 (mod p)

This completes the first part of the proof.
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Now assume that p is a composite integer and that

(p− 1)! ≡ −1 (mod p)

Since p is composite, we have p = ab, where 1 < a < p and 1 < b < p. Because a < p, we
know that a | (p− 1)!, since a is one of the p− 1 numbers multiplied together to form (p− 1)!.
Because (p − 1)! ≡ −1 (mod p), it follows that p | ((p − 1)! + 1). This means, by Theorem 1
from Section 1.5, that a also divides (p− 1)! + 1. By Theorem 2 from Section 1.5, since

a | (p− 1)! and a | ((p− 1)! + 1)

we conclude that
a | [((p− 1)! + 1)− (p− 1)!] = 1

This is a contradiction, since a > 1. �

Fermat’s Little Theorem

THEOREM 2 (Fermat’s Little Theorem): If p is prime and a is an integer with

p 6 | a (1)

then
p | ap−1 − 1 or, equivalently, ap−1 ≡ 1 (mod p) (2)

REMARK 1: If p | a, then ap−1 6≡ 1 (mod p). Indeed, p | a implies a ≡ 0 (mod p), which gives
ap−1 ≡ 0 (mod p) by Theorem 5 from Section 4.1.

REMARK 2: The converse of Fermat’s little theorem is not generally true. Indeed, if a = 5
and p = 4, then (2) becomes

54−1 ≡ 1 (mod 4)

It is much harder to find a similar example for a = 2. Indeed, the smallest composite integer
p > 1 such that

2p−1 ≡ 1 (mod p)

is p = 341 = 11 · 31.

Proof of the Theorem: Consider the following numbers:

a, 2a, 3a, . . . , (p− 1)a

By the Division Algorithm we have

a = pk1 + r1

2a = pk2 + r2

3a = pk3 + r3
. . .

(p− 1)a = pkp−1 + rp−1

=⇒

a ≡ r1 (mod p)

2a ≡ r2 (mod p)

3a ≡ r3 (mod p)

. . .

(p− 1)a ≡ rp−1 (mod p)

(3)
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where 0 ≤ ri ≤ p − 1. Moreover, ri 6= 0, since otherwise p | ia, and therefore by Theorem 2
from Section 3.5, p | i or p | a. But this is impossible, since p > i and p 6 | a by (1). So,

1 ≤ ri ≤ p− 1 (4)

From (3) by part (iii) of Theorem 4 (Section 4.1) it follows that

(p− 1)!ap−1 ≡ r1r2 . . . rp−1 (mod p) (5)

LEMMA: We have
r1r2 . . . rp−1 = (p− 1)! (6)

Proof: We first show that
r1, r2, . . . , rp−1 are all distinct. (7)

In fact, assume to the contrary that ri = rj for some i 6= j. Then by (3) we have

ia− pki = ja− pkj

hence
(i− j)a = p(ki − kj)

This means that p divides (i−j)a. From this by Theorem 2 (Section 3.5) it follows that p | (i−j)
or p | a. But this is impossible, since p > i − j by (4) and p 6 | a by (1). This contradiction
proves (7).

So, we have p− 1 distinct numbers between 1 and p− 1. This means that

{r1, r2, . . . , rp−1} = {1, 2, . . . , p− 1}

which gives (6). �

By (5) and (6) we obtain

(p− 1)!ap−1 ≡ (p− 1)! (mod p)

(p− 1)!ap−1 − (p− 1)! ≡ 0 (mod p)

(p− 1)!(ap−1 − 1) ≡ 0 (mod p)

so
p | 1 · 2 . . . (p− 1)(ap−1 − 1)

Since p divides the product, by Theorem 2 from Section 3.5, it follows that p divides at least
one of its terms. Note that

p 6 | 1, p 6 | 2, . . . , p 6 | (p− 1)

Therefore
p | ap−1 − 1 or, equivalently, ap−1 ≡ 1 (mod p) �
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COROLLARY: If p is prime and a is a positive integer, then

ap ≡ a (mod p)

Proof: If p 6 | a, by Fermat’s little theorem, we know that

ap−1 ≡ 1 (mod p)

Multiplying both sides of this congruence by a, we find that

ap ≡ a (mod p)

If p | a, then p | ap as well, so that

ap ≡ a ≡ 0 (mod p)

This finishes the proof, since ap ≡ a (mod p) if p 6 | a and if p | a. �

EXAMPLE: Prove that 17 | a80 − 1 for any positive integer a with (a, 17) = 1.

Solution: By Fermat’s Little theorem we have

a16 ≡ 1 (mod 17)

therefore by Theorem 5 from Section 4.1, we get

a16·5 ≡ 15 ≡ 1 (mod 17)

and the result follows.

EXAMPLE: Prove that 23 | a154 − 1 for any for any positive integer a with (a, 23) = 1.

Solution: By Fermat’s Little theorem we have

a22 ≡ 1 (mod 23)

therefore by Theorem 5 from Section 4.1, we get

a22·7 ≡ 17 ≡ 1 (mod 23)

and the result follows.

EXAMPLE: Prove that 300 | 1110 − 1.

Solution: We have

1110 − 1 = (115 + 1)(115 − 1) = (115 + 1)(11− 1)(114 + 113 + 112 + 11 + 1) (8)

Since 11 ≡ 1 mod 10, by Theorem 5 from Section 4.1, we get 11n ≡ 1 mod 10. Therefore by
Theorem 4 from Section 4.1, we obtain

114 + 113 + 112 + 11 + 1 ≡ 5 (mod 10)

hence 114 + 113 + 112 + 11+ 1 is divisible by 5. We also note that 115 + 1 is divisible by 2 and
11− 1 is divisible by 10. Therefore the right-hand side of (8) is divisible by 2 · 10 · 5 = 100. On
the other hand, by Fermat’s Little Theorem, 1110 − 1 is divisible by 3. Since (3, 100) = 1, the
whole expression is divisible by 300.
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EXAMPLE: What is the remainder after dividing 350 by 7?

Solution: By Fermat’s Little theorem we have

36 ≡ 1 (mod 7)

therefore by Theorem 5 from Section 4.1, we get

36·8 ≡ 148 ≡ 1 (mod 7)

therefore
350 ≡ 9 ≡ 2 (mod 7)

EXAMPLE: Prove that
3 | n3 − n (9)

for any integer n ≥ 0.

Solution 1:

STEP 1: For n = 0 (9) is true, since 3 | 03 − 0.

STEP 2: Suppose (9) is true for some n = k ≥ 0, that is 3 | k3 − k.

STEP 3: Prove that (9) is true for n = k + 1, that is 3 | (k + 1)3 − (k + 1). We have

(k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1− k − 1 = k3 − k
︸ ︷︷ ︸

St. 2

div. by 3

+3k2 + 3k
︸ ︷︷ ︸

div. by 3

.

Solution 2: 3 | n3 − n by the Corollary above with p = 3.

THEOREM 3: If p is prime and a is an integer such that p 6 | a, then ap−2 is an inverse of a
modulo p.

Proof: If p 6 | a, then by Fermat’s little theorem we have

a · ap−2 = ap−1 ≡ 1 (mod p)

Hence, ap−2 is an inverse of a modulo p. �

COROLLARY: If a and b are positive integers and p is prime with p 6 | a, then the solutions of
the linear congruence

ax ≡ b (mod p)

are the integers x such that
x ≡ ap−2b (mod p)

Proof: Suppose that ax ≡ b (mod p). Since p 6 | a, we know from the Theorem above that ap−2

is an inverse of a modulo p. Multiplying both sides of the original congruence by ap−2, we have

ap−2ax ≡ ap−2b (mod p)

Hence,
x ≡ ap−2b (mod p) �
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EXAMPLE: Find all solutions of the following congruence

2x ≡ 5 (mod 7)

Solution 1: We first note that (2, 7) = 1. Therefore we can apply the Corollary from Section
4.2. Since s = 4 is a particular solution of 2s ≡ 1 (mod 7), we get

x ≡ bs ≡ 5 · 4 ≡ 6 (mod 7)

Solution 2: Since p = 7 is a prime number and 7 6 | 2, we can apply the Corollary above. We
have

x ≡ ap−2b = 27−2 · 5 = 160 ≡ 6 (mod 7)
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