Wilson’s Theorem and Fermat’s Little Theorem

Wilson’sTheorem

THEOREM 1 (Wilson’s Theorem): (p — 1)! = —1 (mod p) if and only if p is prime.
EXAMPLE: We have
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REMARK: The first proof of Wilson’s Theorem was given by the French mathematician Joseph
Lagrange in 1770. The mathematician after whom the theorem is named, John Wilson, con-
jectured, but did not prove it.

Proof: Suppose p is prime. When p = 2 and p = 3, the Theorem is true (see the Example
above). Now let p be a prime greater than 3. By Theorem 1 from Section 4.2, for each integer
a with 1 < a < p —1 there is a unique (since (a,p) = 1) inverse a, 1 < a < p — 1, with

aa =1 (mod p)

By Theorem 2 from Section 4.2, the only positive integers less than p that are their own inverses
are 1 and p — 1. Therefore, we can group the integers from 2 to p — 2 into (p — 3)/2 pairs of
integers, with the product of each pair congruent to 1 modulo p. Hence, we have

2-3...(p—3)(p—2)=1 (mod p)

We multiply both sides of this congruence by 1 and p — 1 to obtain
p—D'=1-2-3...p=3)p—-2)p—1)=1-(p—1) = -1 (mod p)

This completes the first part of the proof.



Now assume that p is a composite integer and that

(p—1)!'=—1 (mod p)

Since p is composite, we have p = ab, where 1 < a < pand 1 < b < p. Because a < p, we
know that a | (p — 1)!, since a is one of the p — 1 numbers multiplied together to form (p — 1)!.
Because (p — 1)! = —1 (mod p), it follows that p | ((p — 1)! + 1). This means, by Theorem 1
from Section 1.5, that a also divides (p — 1)! + 1. By Theorem 2 from Section 1.5, since

al(p—1)! and a|((p—1'+1)

we conclude that
all[(p-D'+1)-(@-1]=1

This is a contradiction, since a > 1. B

Fermat’s Little Theorem

THEOREM 2 (Fermat’s Little Theorem): If p is prime and a is an integer with

pfa (1)

then

p|a”' —1 or, equivalently, o' =1 (mod p) (2)
REMARK 1: If p | a, then a?~! # 1 (mod p). Indeed, p | a implies a = 0 (mod p), which gives
a?~! = 0 (mod p) by Theorem 5 from Section 4.1.

REMARK 2: The converse of Fermat’s little theorem is not generally true. Indeed, if a = 5
and p = 4, then (2) becomes
571 =1 (mod 4)

It is much harder to find a similar example for a = 2. Indeed, the smallest composite integer
p > 1 such that
2°~1 =1 (mod p)

isp=341=11-31.
Proof of the Theorem: Consider the following numbers:
a, 2a, 3a,...,(p—1)a

By the Division Algorithm we have

a = pk; + 1, a =71, (mod p)
2a = pkg + 79 2a =1y (HlOd p)
3a = pks + 13 g 3a = r3 (mod p) (3)
(p—Da = pkp1 +1p1 (p—1)a =1,y (mod p)



where 0 < r; < p — 1. Moreover, r; # 0, since otherwise p | ia, and therefore by Theorem 2
from Section 3.5, p | i or p | a. But this is impossible, since p > i and p [ a by (1). So,

1<r;<p-1 (4)

From (3) by part (iii) of Theorem 4 (Section 4.1) it follows that

(p—Dla? ' =rry...7 1 (mod p) (5)
LEMMA: We have
7“1T2...7’p_1:<p—1)! (6)
Proof: We first show that
1,72, ...,7p—1 are all distinct. (7)

In fact, assume to the contrary that r; = r; for some ¢ # j. Then by (3) we have
ia — pk; = ja — pk;
hence
(1 = j)a = p(k; — kj)
This means that p divides (i —j)a. From this by Theorem 2 (Section 3.5) it follows that p | (i—j)

or p | a. But this is impossible, since p > i — j by (4) and p Ja by (1). This contradiction
proves (7).

So, we have p — 1 distinct numbers between 1 and p — 1. This means that
{ri,ro,....rpat={1,2,....,p— 1}
which gives (6). W
By (5) and (6) we obtain
(p=1Dla""" = (p—1)! (mod p)
(p—1)la*' — (p— 1) =0 (mod p)
(p—1D!(a?t —1) =0 (mod p)

pl1-2...(p—1D(a ' =1)

Since p divides the product, by Theorem 2 from Section 3.5, it follows that p divides at least
one of its terms. Note that

p/{/17 p/{/27ap/r(p_1)

Therefore
p|a”' —1 or, equivalently, o' =1 (mod p) W



COROLLARY: If p is prime and a is a positive integer, then
a? = a (mod p)
Proof: If p f a, by Fermat’s little theorem, we know that
a’?~' =1 (mod p)
Multiplying both sides of this congruence by a, we find that
a? = a (mod p)
If p | a, then p | a” as well, so that
a’? =a =0 (mod p)

This finishes the proof, since a? = a (mod p) if p fa and if p | a. B

EXAMPLE: Prove that 17 | a® — 1 for any positive integer a with (a,17) = 1.

Solution: By Fermat’s Little theorem we have
a'® =1 (mod 17)
therefore by Theorem 5 from Section 4.1, we get
a'® =1°=1 (mod 17)

and the result follows.

EXAMPLE: Prove that 23 | a’® — 1 for any for any positive integer a with (a,23) = 1.

Solution: By Fermat’s Little theorem we have
a** =1 (mod 23)
therefore by Theorem 5 from Section 4.1, we get
a®*"=1"=1 (mod 23)

and the result follows.

EXAMPLE: Prove that 300 | 111° — 1.

Solution: We have
10— 1=11"+1)(11° = 1) = (11° + 1)(11 — 1)(11* + 11> + 112 + 11 + 1) (8)

Since 11 = 1 mod 10, by Theorem 5 from Section 4.1, we get 11" = 1 mod 10. Therefore by
Theorem 4 from Section 4.1, we obtain

11* +11° + 11 + 114+ 1 = 5 (mod 10)

hence 114 4+ 113 + 112 + 11 + 1 is divisible by 5. We also note that 115 + 1 is divisible by 2 and
11 — 1 is divisible by 10. Therefore the right-hand side of (8) is divisible by 2-10-5 = 100. On
the other hand, by Fermat’s Little Theorem, 11'° — 1 is divisible by 3. Since (3,100) = 1, the
whole expression is divisible by 300.



EXAMPLE: What is the remainder after dividing 3°° by 77
Solution: By Fermat’s Little theorem we have
3% =1 (mod 7)
therefore by Theorem 5 from Section 4.1, we get
308 = 1% =1 (mod 7)

therefore
3 =9 =2 (mod 7)

EXAMPLE: Prove that
3|n*—n 9)
for any integer n > 0.
Solution 1:
STEP 1: For n =0 (9) is true, since 3 | 0 — 0.
STEP 2: Suppose (9) is true for some n =k > 0, that is 3 | k* — k.
STEP 3: Prove that (9) is true for n = k + 1, that is 3 | (k+1)3 — (k + 1). We have
(k+1°—(k+1) =k +3k°+3k+1—k—1= k*—k +3k*+ 3k.
—— ————
St. 92 div. by 3

div. by 3

Solution 2: 3 | n® —n by the Corollary above with p = 3.

THEOREM 3: If p is prime and a is an integer such that p Ja, then a?~2 is an inverse of a
modulo p.

Proof: If p f a, then by Fermat’s little theorem we have
a-a’"?=a""' =1 (mod p)
Hence, a?~2 is an inverse of a modulo p. W

COROLLARY: If a and b are positive integers and p is prime with p [ a, then the solutions of
the linear congruence
ax = b (mod p)

are the integers x such that
r = a’*b (mod p)

Proof: Suppose that az = b (mod p). Since p [ a, we know from the Theorem above that a?~2
is an inverse of a modulo p. Multiplying both sides of the original congruence by a?~2, we have

a’2ax = aP~*b (mod p)

Hence,
r = a’?b (mod p) A
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EXAMPLE: Find all solutions of the following congruence
2x =5 (mod 7)

Solution 1: We first note that (2,7) = 1. Therefore we can apply the Corollary from Section
4.2. Since s = 4 is a particular solution of 2s = 1 (mod 7), we get

r=bs=5-4=6 (mod 7)

Solution 2: Since p = 7 is a prime number and 7 f 2, we can apply the Corollary above. We

have
r=a""?b=2"7.5=160 =6 (mod 7)



