
Prime Numbers

DEFINITION: A prime is a positive integer greater than 1 that is divisible by no positive
integers other than 1 and itself.

EXAMPLE: The numbers 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 are prime.

DEFINITION: A positive integer which is not prime, and which is not equal to 1, is called
composite.

EXAMPLE:

1. The number 1 is neither prime nor composite.

2. The integers

4 = 2 · 2, 8 = 4 · 2, 33 = 3 · 11, 111 = 3 · 37, 1001 = 7 · 11 · 13

are composite.

LEMMA: Every positive integer greater than 1 has a prime divisor.

Proof: We prove the lemma by contradiction; we assume that there is a positive integer > 1
having no prime divisors. Then, since the set of positive integers > 1 with no prime divisors
is non-empty, the well-ordering property tells us that there is a least positive integer n greater
than 1 with no prime divisors. Since n has no prime divisors and n divides n, we see that n is
not prime. Hence, we can write n = ab with 1 < a < n and 1 < b < n. Because a < n, a must
have a prime divisor. By Theorem 1 from Section 1.5, any divisor of a is also a divisor of n, so
that n must have a prime divisor, contradicting the fact that n has no prime divisors. We can
conclude that every positive integer has at least one prime divisor. �

THEOREM 1: There are infinitely many primes.

Proof: Suppose that there are only finitely many prime numbers,

p1, p2, . . . , pn (1)

where n is a positive integer. Consider the integer

Qn = p1p2 . . . pn + 1 (2)

By the Lemma above, Qn has at least one prime divisor, say, q. Since all the prime numbers
are listed in (1), it follows that q = pj for some integer j with 1 ≤ j ≤ n. Rewrite (2) as

Qn − p1p2 . . . pn = 1 (3)

Since pj divides Qn and p1p2 . . . pn, it divides Qn − p1p2 . . . pn by Theorem 2 from Section 1.5.
From this and (3) it follows that pj divides 1. This is impossible, since no prime divides 1. This
contradiction shows that there are infinitely many primes. �
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THEOREM 2: If n is a composite integer, then n has a prime factor not exceeding
√
n.

Proof: Since n is composite, we can write n = ab, where a and b are integers with

1 < a ≤ b < n

We must have a ≤
√
n, since otherwise

b ≥ a >
√
n

and
ab >

√
n ·

√
n = n

Now, by the Lemma above, a must have a prime divisor, which by Theorem 1 from Section 1.5
is also a divisor of n and which is clearly less than or equal to

√
n.
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