This part consists of 8 multiple choice problems. Nothing more than the answer is required; consequently no partial credit will be awarded.

1. Express 80° in radians.

A. $\frac{\pi}{9}$

B. $\frac{2\pi}{9}$

C. $\frac{4\pi}{9}$

D. $\frac{5\pi}{9}$

E. $\frac{7\pi}{9}$

2. Express $\frac{7\pi}{6}$ rad in degrees.

A. 210°

B. 220°

C. 230°

D. 240°

E. 250°
3. Find an angle that is coterminal with the angle \(\theta = 20^\circ \) in standard position.

A 200°
B 160°
C -160°
D -200°
E -340°

4. Find an angle that is coterminal with the angle \(\theta = \frac{\pi}{5} \) in standard position.

A \(\frac{2\pi}{5} \)
B \(\frac{4\pi}{5} \)
C \(\frac{6\pi}{5} \)
D \(\frac{11\pi}{5} \)
E \(\frac{12\pi}{5} \)

5. Find an angle with measure between 0° and 360° that is coterminal with the angle of measure 1567° in standard position.

A 107°
B 117°
C 127°
D 137°
E None of the above
6. Find the length of an arc of a circle with radius 27 m that subtends a central angle of 60°.

 A \(\frac{9\pi}{2} \)
 B \(\frac{5\pi}{2} \)
 C \(\frac{9\pi}{4} \)
 D \(\frac{27\pi}{4} \)
 E \(\frac{9\pi}{2} \)

7. A central angle \(\theta \) in a circle of radius 12 m is subtended by an arc of length 22 m. Find the measure of \(\theta \) in radians.

 A \(\frac{6}{11} \)
 B \(\frac{11}{6} \)
 C \(\frac{6\pi}{11} \)
 D \(\frac{11\pi}{6} \)
 E None of the above

8. Find the area of a sector of a circle with central angle 60° if the radius of the circle is \(\sqrt{3} \) m.

 A \(\frac{\pi}{2} \)
 B \(\frac{3\pi}{2} \)
 C \(\frac{\pi}{3} \)
 D \(\frac{2\pi}{3} \)
 E \(\pi \)
In the following problems you are required to show all your work and provide the necessary explanations everywhere to get full credit.

1. A satellite in a circular orbit 1250 kilometers above Earth makes one complete revolution every 110 minutes. What is its angular and linear speed? Assume that Earth is a sphere of radius 6400 kilometers.

2. A biologist wants to know the width \(w \) of a river (see figure) in order to properly set instruments for studying the pollutants in the water. From point \(A \), the biologist walks downstream 100 feet and sights to point \(C \). From this sighting, it is determined that \(\theta = 58^\circ \). How wide is the river?