1. Determine the end behavior of the polynomial \(P(x) = -x^7 + 27x + 18 \).

 \(\text{A} \) \(y \to \infty \) as \(x \to \infty \) and \(y \to \infty \) as \(x \to -\infty \)

 \(\text{B} \) \(y \to \infty \) as \(x \to \infty \) and \(y \to -\infty \) as \(x \to -\infty \)

 \(\text{C} \) \(y \to -\infty \) as \(x \to \infty \) and \(y \to \infty \) as \(x \to -\infty \)

 \(\text{D} \) \(y \to -\infty \) as \(x \to \infty \) and \(y \to -\infty \) as \(x \to -\infty \)

 \(\text{E} \) None of the above

Solution: The polynomial \(P \) has degree 7 and leading coefficient \(-1\). Thus, \(P \) has odd degree and negative leading coefficient, so it has the following end behavior:

\[y \to -\infty \text{ as } x \to \infty \text{ and } y \to \infty \text{ as } x \to -\infty \]

2. Divide \(x^2 + x + 1 \) by \(x + 2 \).

 \(\text{A} \) quotient=\(x - 2 \), remainder=2

 \(\text{B} \) quotient=\(x - 3 \), remainder=1

 \(\text{C} \) quotient=\(x + 3 \), remainder=1

 \(\text{D} \) quotient=\(x - 1 \), remainder=3 \(\leftarrow \) Right Answer

 \(\text{E} \) quotient=\(x + 4 \), remainder=2

Solution: We have

\[
\begin{array}{c}
\begin{array}{c}
\underline{x + 2)} \quad x^2 + x + 1 \\
\hline
\quad x^2 + 2x \\
\quad -x^2 - 2x \\
\hline
\quad -x + 1 \\
\quad + x + 2 \\
\hline
\quad 3
\end{array}
\end{array}
\]
3. Factor the polynomial \(P(x) = 2x^4 - 6x^3 + 4x^2 \).

 \(A \) \(2x^2(x + 1)(x - 2) \)

 \(B \) \(2x^2(x - 1)(x - 2) \) \(\leftarrow \) Right Answer

 \(C \) \(2x^2(x - 1)(x + 2) \)

 \(D \) \(2x^2(x + 1)(x + 2) \)

 \(E \) None of the above

Solution: We have

\[
2x^4 - 6x^3 + 4x^2 = 2x^2(x^2 - 3x + 2) = 2x^2(x - 1)(x - 2)
\]

4. Find all rational zeros of the polynomial \(P(x) = x^4 - x^2 \).

 \(A \) \(0 \)

 \(B \) \(0, 1 \)

 \(C \) \(0, -1 \)

 \(D \) \(0, 1, -1 \) \(\leftarrow \) Right Answer

 \(E \) None of the above

Solution: We have

\[
x^4 - x^2 = x^2(x^2 - 1) = x^2(x - 1)(x + 1)
\]

therefore the polynomial \(P(x) = x^4 - x^2 \) has zeros 0, 1, -1.
In the following problems you are required to show all your work and provide the necessary explanations everywhere to get full credit.

1. Let \(f(x) = 3x^2 - 6x + 2 \).
 (a) Express \(f \) in standard form using the technique of completing the square.
 Solution: We have
 \[
 f(x) = 3x^2 - 6x + 2 \\
 = 3(x^2 - 2x) + 2 \\
 = 3(x^2 - 2x \cdot 1) + 2 \\
 = 3(x^2 - 2x \cdot 1 + 1^2 - 1^2) + 2 \\
 = 3(x^2 - 2x \cdot 1 + 1^2) - 3 \cdot 1^2 + 2 \\
 = 3(x - 1)^2 - 1
 \]
 The standard form is \([f(x) = 3(x - 1)^2 - 1]\).

 (b) Sketch the graph of \(f \).
 Solution: The graph is a parabola that has its vertex at \((1, -1)\) and opens upward, as sketched in the Figure below.

 (c) Find the minimum value of \(f \).
 Solution: Since the coefficient of \(x^2 \) is positive, \(f \) has a minimum value. The minimum value is \(f(1) = -1 \).
2. A hockey team plays in an arena that has a seating capacity of 20,000 spectators. With the ticket price set at $10, average attendance at recent games has been 10,000. A market survey indicates that for each dollar the ticket price is lowered, the average attendance increases by 1000. Find the price that maximizes revenue from ticket sales.

Solution: The model we want is a function that gives the revenue for any ticket price. We know that

\[\text{revenue} = \text{ticket price} \times \text{attendance} \]

There are two varying quantities: ticket price and attendance. Since the function we want depends on price, we let

\[x = \text{ticket price} \]

Next, we must express the attendance in terms of \(x \).

The model is the function \(R \) that gives the revenue for a given ticket price \(x \).

\[R(x) = x(10,000 - 1000x) \]
\[R(x) = 10,000x - 1000x^2 \]

Since \(R(x) = 10,000x - 1000x^2 \) is a quadratic function with \(a = -1000 \) and \(b = 10,000 \), the maximum occurs at

\[x = -\frac{b}{2a} = -\frac{10,000}{2(-1000)} = 5 \]

So a ticket price of \(\$5 \) yields the maximum revenue.