Final Exam

Algebra and Calculus

May 10, 2012

PLEASE READ THE FOLLOWING INFORMATION.

• This is a 110-minute exam. Calculators, books, notes, and other aids are not allowed.

• You may use the backs of the pages or the extra pages for scratch work. **Do not unstaple or remove pages as they can be lost in the grading process.**

• Please do not put your name on any page besides the first page.
MC I (12 points). This part consists of 12 multiple choice problems. Nothing more than the answer is required; consequently no partial credit will be awarded.

1. Evaluate $\frac{1/2}{1/4} - \frac{3}{5}$.
 - A 9/5
 - B 8/5
 - C 7/5
 - D 6/5
 - E None of the above

2. Evaluate $0.001 - \frac{0.01}{0.1}$.
 - A -1
 - B 1
 - C 2
 - D -2
 - E 0

3. Evaluate $-\frac{56}{7} + \frac{35}{5}$.
 - A 1
 - B -1
 - C -2
 - D 2
 - E 0

4. Evaluate $\sqrt[3]{27} - \sqrt{36} + \sqrt{16} - 1$.
 - A -2
 - B 0
 - C 2
 - D -1
 - E 1
5. Evaluate $\sqrt{0.01}$.
 A 1
 B 0.1
 C 0.01
 D 0.001
 E 0.0001

6. Evaluate $\csc\left(\frac{\pi}{6}\right) - \log_2 8$.
 A -1
 B 0
 C -2
 D 2
 E 1

7. Evaluate $\arccos 0$.
 A 1
 B 0
 C π
 D $\pi/2$
 E None of the above

8. Evaluate $\sqrt{9 + 16} - \frac{2 + 4}{2}$.
 A 7
 B 8
 C 9
 D 4
 E 2
9. Evaluate $\log 100$.
 A. 2
 B. 0
 C. 1
 D. 10
 E. None of the above

10. Evaluate $\sin 0 + \cos \pi$.
 A. -1
 B. 1
 C. 2
 D. -2
 E. 0

11. Evaluate $\tan \left(\frac{\pi}{3} \right)$.
 A. $\frac{1}{2}$
 B. $\sqrt{3}$
 C. $\frac{1}{\sqrt{3}}$
 D. 1
 E. None of the above

12. Evaluate $\sec^{-1}(-2)$.
 A. $\frac{\pi}{3}$
 B. $-\frac{\pi}{3}$
 C. $\frac{5\pi}{3}$
 D. $\frac{4\pi}{3}$
 E. $\frac{2\pi}{3}$
MC II (18 points). This part consists of 9 multiple choice problems. Nothing more than the answer is required; consequently no partial credit will be awarded.

1. $\cos(x + y)$ is equal to
 A. $\cos x + \cos y$
 B. $\cos x - \cos y$
 C. $\cos x \cos y - \sin x \sin y$
 D. $\cos x \cos y + \sin x \sin y$
 E. None of the above

2. If $f(x) = 6x - 18$, then $f\left(\frac{x}{3}\right)$ and $\frac{f(x)}{3}$ are
 A. $6x - 18, \ 6x - 3$
 B. $2x - 6, \ 2x - 18$
 C. $2x - 18, \ 2x - 3$
 D. $x - 3, \ x + 3$
 E. None of the above

3. The equation of the circle that has center $(3, -5)$ and radius 3 is
 A. $(x + 3)^2 + (x - 5)^2 = 3$
 B. $(x - 3)^2 + (x - 5)^2 = 9$
 C. $(x - 3)^2 + (x + 5)^2 = 9$
 D. $(x + 3)^2 + (x - 5)^2 = 9$
 E. None of the above
4. The vertical and horizontal asymptotes of \(\frac{6x^2 + 1}{2x^2 + x - 1} \) are

\[A \quad x = \frac{1}{2}, \quad x = 1, \quad y = 2 \]

\[B \quad x = \frac{1}{2}, \quad x = -1, \quad y = 3 \]

\[C \quad x = \frac{1}{2}, \quad x = -1, \quad y = -3 \]

\[D \quad x = -\frac{1}{2}, \quad x = -1, \quad y = 3 \]

\[E \quad \text{None of the above} \]

5. The remainder of \(\frac{x^3 + x + 1}{x + 1} \) is

\[A \quad 0 \]

\[B \quad 1 \]

\[C \quad -1 \]

\[D \quad 2 \]

\[E \quad -2 \]

6. The reference number for \(t = -\frac{5\pi}{6} \) is

\[A \quad \frac{5\pi}{6} \]

\[B \quad \frac{\sqrt{3}}{2} \]

\[C \quad \frac{1}{2} \]

\[D \quad -\frac{\pi}{6} \]

\[E \quad \frac{\pi}{6} \]
7. The range of $|x| + 2$ is

A. $(-\infty, \infty)$
B. $(0, \infty)$
C. $[0, \infty)$
D. $(2, \infty)$
E. $[2, \infty)$

8. The phase amplitude ($|a|$), shift (b), and period (p) of $f(x) = 10 \cos\left(\frac{1}{2}x\right)$ are

A. $|a| = 10, \ b = \frac{1}{2}, \ p = 4\pi$
B. $|a| = -10, \ b = 2, \ p = 2\pi$
C. $|a| = 10, \ b = 0, \ p = \frac{\pi}{4}$
D. $|a| = 10, \ b = 0, \ p = \frac{\pi}{2}$
E. None of the above

9. A polynomial with degree 3 and zeros $-1, 1, 3$ is

A. $x^3 - 3x^2 - x + 3$
B. $x^3 + 3x^2 - x - 3$
C. $x^3 + x^2 - 5x + 3$
D. $x^4 - 6x^2 + 8x - 3$
E. None of the above
(60 points). Problems 1-9 are free response questions. You are required to show all your work and provide the necessary explanations everywhere to get full credit.

1. (5 points) Factor $x^4 - x^3 - 2x^2 + 2x$.

2. (10 points) Solve the following inequalities:

 (a) $2|2x - 7| < 14$

 (b) $(x - 1)(x + 2) \leq -2$
3. (15 points) Solve the following equations:

(a) \(2x - 1 = \sqrt{2 - x} \)

(b) \(\log_9(x - 5) + \log_9(x + 3) = 1 \)

(c) \(1 + \sin x = 2 \cos^2 x \)
4. (5 points) Combine the expression \(\frac{1}{3} \log(x + 2) + \frac{1}{7} \log(x^2 + 1) - 5 \log(x^4 + 1) + \log x. \)

5. (5 points) Show that the equation \(x^2 + y^2 + 2x - 6y + 9 = 0 \) represents a circle, and find the radius and center of the circle.
6. (5 points) Plot \(f(x) = \frac{x - 2}{x - 1} \) using transformations.

7. (5 points) Let \(P(1, 2) \) and \(Q(2, -1) \) be two points on the coordinate plane. Find the slope of a line that is perpendicular to the line through \(P \) and \(Q \).
8. (5 points) Find the inverse function of \(f(x) = -\sqrt{x - 1} \).

9. (5 points) A manufacturer of soft drinks advertises their orange soda as “naturally flavored,” although it contains only 5% orange juice. A new federal regulation stipulates that to be called “natural” a drink must contain at least 10% fruit juice. How much pure orange juice must this manufacturer add to 900 gal of orange soda to conform to the new regulation?