Section 2.6 Combining Functions
Sums, Differences, Products, and Quotients

Two functions \(f \) and \(g \) can be combined to form new functions \(f + g, f - g, fg, \) and \(f/g \) in a manner similar to the way we add, subtract, multiply, and divide real numbers.

Algebra of Functions

Let \(f \) and \(g \) be functions with domains \(A \) and \(B \). Then the functions \(f + g, f - g, fg, \) and \(f/g \) are defined as follows.

\[
\begin{align*}
(f + g)(x) &= f(x) + g(x) & \text{Domain } A \cap B \\
(f - g)(x) &= f(x) - g(x) & \text{Domain } A \cap B \\
(fg)(x) &= f(x)g(x) & \text{Domain } A \cap B \\
\left(\frac{f}{g}\right)(x) &= \frac{f(x)}{g(x)} \quad \text{Domain } \{x \in A \cap B \mid g(x) \neq 0\}
\end{align*}
\]

EXAMPLE: The domain of \(f(x) = \sqrt{x} \) is \(A = [0, \infty) \), the domain of \(g(x) = \sqrt{1-x} \) is \(B = (-\infty, 1] \), and the domain of \(h(x) = \sqrt{x-1} \) is \(C = [1, \infty) \), so the domain of

\[
(f - g)(x) = \sqrt{x} - \sqrt{1-x} \quad \text{is} \quad A \cap B = [0, 1]
\]

and

\[
(f - h)(x) = \sqrt{x} - \sqrt{x-1} \quad \text{is} \quad A \cap C = [1, \infty)
\]

EXAMPLE: If \(f(x) = x^2 \) and \(g(x) = x - 1 \), then the domain of the rational function

\[
(f/g)(x) = \frac{x^2}{x - 1} \quad \text{is} \quad \{x \mid x \neq 1\} \text{ or } (-\infty, 1) \cup (1, \infty)
\]

Composition of Functions

There is another way of combining two functions to obtain a new function. For example, suppose that \(y = f(u) = \sqrt{u} \) and \(u = g(x) = x^2 + 1 \). Since \(y \) is a function of \(u \) and \(u \) is, in turn, a function of \(x \), it follows that \(y \) is ultimately a function of \(x \). We compute this by substitution:

\[
y = f(u) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}
\]

The procedure is called composition because the new function is composed of the two given functions \(f \) and \(g \).

Composition of Functions

Given two functions \(f \) and \(g \), the **composite function** \(f \circ g \) (also called the composition of \(f \) and \(g \)) is defined by

\[
(f \circ g)(x) = f(g(x))
\]

EXAMPLE: If \(f(x) = x^2 + 1 \) and \(g(x) = x - 3 \), find the following.

(a) \(f \circ f \) \hspace{1cm} (b) \(f \circ g \) \hspace{1cm} (c) \(g \circ f \) \hspace{1cm} (d) \(g \circ g \) \hspace{1cm} (e) \(f(g(2)) \) \hspace{1cm} (f) \(g(f(2)) \)
EXAMPLE: If \(f(x) = x^2 + 1 \) and \(g(x) = x - 3 \), find the following.

(a) \(f \circ f \)
(b) \(f \circ g \)
(c) \(g \circ f \)
(d) \(g \circ g \)
(e) \(f(g(2)) \)
(f) \(g(f(2)) \)

Solution: We have

(a) \(f \circ f = f(f(x)) = \begin{cases} f(x^2 + 1) \\ (f(x))^2 + 1 \end{cases} = (x^2 + 1)^2 + 1 = (x^2)^2 + 2x^2 \cdot 1 + 1^2 + 1 = x^4 + 2x^2 + 2 \)

(b) \(f \circ g = f(g(x)) = \begin{cases} f(x - 3) \\ (g(x))^2 + 1 \end{cases} = (x - 3)^2 + 1 = x^2 - 2x \cdot 3 + 3^2 + 1 = x^2 - 6x + 10 \)

(c) \(g \circ f = g(f(x)) = \begin{cases} g(x^2 + 1) \\ f(x) - 3 \end{cases} = (x^2 + 1) - 3 = x^2 - 2 \)

(d) \(g \circ g = g(g(x)) = \begin{cases} g(x - 3) \\ g(x) - 3 \end{cases} = (x - 3) - 3 = x - 6 \)

(e) \(f(g(2)) = (2 - 3)^2 + 1 = (-1)^2 + 1 = 1 + 1 = 2 \)

(f) \(g(f(2)) = 2^2 - 2 = 4 - 2 = 2 \)

EXAMPLE: If \(f(x) = x \) and \(g(x) = 1 \), then

\[f \circ f = x \quad f \circ g = 1 \quad g \circ f = 1 \quad g \circ g = 1 \]

REMARK: You can see from the Examples above that sometimes \(f \circ g = g \circ f \), but, in general, \(f \circ g \neq g \circ f \).

The domain of \(f \circ g \) is the set of all \(x \) in the domain of \(g \) such that \(g(x) \) is in the domain of \(f \). In other words, \((f \circ g)(x) \) is defined whenever both \(g(x) \) and \(f(g(x)) \) are defined.

EXAMPLE: If \(f(x) = x^2 \) and \(g(x) = \sqrt{x} \), then

\[f \circ f = (x^2)^2 = x^4 \quad f \circ g = (\sqrt{x})^2 = x, \quad x \geq 0 \quad g \circ f = \sqrt{x^2} = |x| \quad g \circ g = \sqrt{\sqrt{x}} = \sqrt[4]{x} \]

(of course, the domain of \(g \circ g = \sqrt[4]{x} \) is all nonnegative numbers).

EXAMPLE: If \(f(x) = x^3 \) and \(g(x) = \sqrt[3]{x} \), then

\[f \circ f = (x^3)^3 = x^9 \quad f \circ g = (\sqrt[3]{x})^3 = x \quad g \circ f = \sqrt[3]{x^3} = x \quad g \circ g = \sqrt[3]{\sqrt[3]{x}} = \sqrt[9]{x} \]

EXAMPLE: If \(f(x) = \sqrt{x} \) and \(g(x) = \sqrt{2 - x} \), find each function and its domain.

(a) \(f \circ g \)
(b) \(g \circ f \)
(c) \(f \circ f \)
(d) \(g \circ g \)
EXAMPLE: If \(f(x) = \sqrt{x} \) and \(g(x) = \sqrt{2-x} \), find each function and its domain.

(a) \(f \circ g \) \quad (b) \(g \circ f \) \quad (c) \(f \circ f \) \quad (d) \(g \circ g \)

Solution:

(a) We have
\[
(f \circ g)(x) = f(g(x)) = f(\sqrt{2-x}) = \sqrt{\sqrt{2-x}} = \sqrt{2-x}
\]
The domain of \(f \circ g \) is \(\{x \mid 2-x \geq 0\} = \{x \mid x \leq 2\} = (-\infty, 2] \).

(b) We have
\[
(g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = \sqrt{2-\sqrt{x}}
\]
For \(\sqrt{x} \) to be defined we must have \(x \geq 0 \). For \(\sqrt{2-\sqrt{x}} \) to be defined we must have \(2-\sqrt{x} \geq 0 \), that is, \(\sqrt{x} \leq 2 \), or \(x \leq 4 \). Thus we have \(0 \leq x \leq 4 \), so the domain of \(g \circ f \) is the closed interval \([0, 4]\).

(c) We have
\[
(f \circ f)(x) = f(f(x)) = f(\sqrt{x}) = \sqrt{\sqrt{x}} = \sqrt{x}
\]
The domain of \(f \circ f \) is \([0, \infty)\).

(d) We have
\[
(g \circ g)(x) = g(g(x)) = g(\sqrt{2-x}) = \sqrt{2-\sqrt{2-x}}
\]
This expression is defined when both \(2-x \geq 0 \) and \(2-\sqrt{2-x} \geq 0 \). The first inequality means \(x \leq 2 \), and the second is equivalent to \(\sqrt{2-x} \leq 2 \), or \(2-x \leq 4 \), or \(x \geq -2 \). Thus \(-2 \leq x \leq 2 \), so the domain of \(g \circ g \) is the closed interval \([-2, 2]\).

It is possible to take the composition of three or more functions. For instance, the composite function \(f \circ g \circ h \) is found by first applying \(h \), then \(g \), and then \(f \) as follows:
\[
(f \circ g \circ h)(x) = f(g(h(x)))
\]

EXAMPLE: Find \(f \circ g \circ h \) if \(f(x) = x/(x+1) \), \(g(x) = x^{10} \), and \(h(x) = x + 3 \).

Solution: We have
\[
(f \circ g \circ h)(x) = f(g(h(x))) = f(g(x+3)) = f((x+3)^{10}) = \frac{(x+3)^{10}}{(x+3)^{10}+1}
\]

So far we have used composition to build complicated functions from simpler ones. But in calculus it is often useful to be able to decompose a complicated function into simpler ones, as in the following example.

EXAMPLE: Given \(F(x) = \frac{4}{(x+9)^2} \), find functions \(f, g, \) and \(h \) such that \(F = f \circ g \circ h \).
EXAMPLE: Given $F(x) = \frac{4}{(x+9)^2}$, find functions $f, g,$ and h such that $F = f \circ g \circ h$.

Solution 1: The formula for F says: First add 9, then square $x + 9$, and finally divide 4 by the result. So we let

$$f(x) = \frac{4}{x}, \quad g(x) = x^2, \quad h(x) = x + 9$$

Then

$$(f \circ g \circ h)(x) = f(g(h(x))) = f(g(x + 9)) = f((x + 9)^2) = \frac{4}{(x + 9)^2} = F(x)$$

Solution 2: Here is another way to look at F: First add 9, then divide 2 by $x + 9$, and finally square the result. So we let

$$f(x) = x^2, \quad g(x) = \frac{2}{x}, \quad h(x) = x + 9$$

Then

$$(f \circ g \circ h)(x) = f(g(h(x))) = f(g(x + 9)) = f\left(\frac{2}{x + 9}\right) = \left(\frac{2}{x + 9}\right)^2 = \frac{4}{(x + 9)^2} = F(x)$$