Applications of Taylor Polynomials

Approximating Functions by Polynomials

Suppose that f(x) is equal to the sum of its Taylor series at a:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

In Section 8.7 we introduced the notation $T_n(x)$ for the *n*th partial sum of this series and called it the *n*th-degree Taylor polynomial of f at a. Thus

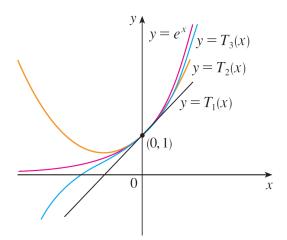
$$T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i = f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n$$

Since f is the sum of its Taylor series, we know that $T_n(x) \to f(x)$ as $n \to \infty$ and so T_n can be used as an approximation to $f: f(x) \approx T_n(x)$. Notice that the first-degree Taylor polynomial

$$T_1(x) = f(a) + f'(a)(x - a)$$

is the same as the linearization of f at a that we discussed in Section 2.8. Notice also that T_1 and its derivative have the same values at a that f and f' have. In general, it can be shown that the derivatives of T_n at a agree with those of f up to and including derivatives of order n.

To illustrate these ideas let's take another look at the graphs of $y = e^x$ and its first few Taylor polynomials, as shown in the Figure below. The graph of T_1 is the tangent line to $y = e^x$ at (0,1); this tangent line is the best linear approximation to e^x near (0,1). The graph of T_2 is the parabola $y = 1 + x + x^2/2$, and the graph of T_3 is the cubic curve $y = 1 + x + x^2/2 + x^3/6$, which is a closer fit to the exponential curve $y = e^x$ than T_2 . The next Taylor polynomial T_4 would be an even better approximation, and so on.



	x = 0.2	x = 3.0
$T_2(x)$	1.220000	8.500000
$T_4(x)$	1.221400	16.375000
$T_6(x)$	1.221403	19.412500
$T_8(x)$	1.221403	20.009152
$T_{10}(x)$	1.221403	20.079665
e^x	1.221403	20.085537

The values in the Table above give a numerical demonstration of the convergence of the Taylor polynomials $T_n(x)$ to the function $y = e^x$. We see that when x = 0.2 the convergence is very rapid, but when x = 3 it is somewhat slower. In fact, the farther x is from 0, the more slowly $T_n(x)$ converges to e^x .

When using a Taylor polynomial T_n to approximate a function f, we have to ask the questions: How good an approximation is it? How large should we take n to be in order to achieve a desired accuracy? To answer these questions we need to look at the absolute value of the remainder:

$$|R_n(x)| = |f(x) - T_n(x)|$$

There are three possible methods for estimating the size of the error:

- 1. If a graphing device is available, we can use it to graph $|R_n(x)|$ and thereby estimate the error.
- 2. If the series happens to be an alternating series, we can use the Alternating Series Estimation Theorem.
- 3. In all cases we can use Taylor's Formula, which says that

$$R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!} (x-a)^{n+1}$$
 where $x < z < a$

EXAMPLE 1:

- (a) Approximate the function $f(x) = \sqrt[3]{x}$ by a Taylor polynomial of degree 2 at a = 8.
- (b) How accurate is this approximation when $7 \le x \le 9$?

Solution:

(a) We have

$$f(x) = \sqrt[3]{x} = x^{1/3}$$

$$f(8) = 2$$

$$f'(x) = \frac{1}{3}x^{-2/3}$$

$$f'(8) = \frac{1}{12}$$

$$f''(x) = -\frac{2}{9}x^{-5/3}$$

$$f''(8) = -\frac{1}{144}$$

$$f'''(x) = \frac{10}{27}x^{-8/3}$$

Thus the second-degree Taylor polynomial is

$$T_2(x) = f(8) + \frac{f'(8)}{1!}(x-8) + \frac{f''(8)}{2!}(x-8)^2 = 2 + \frac{1}{12}(x-8) - \frac{1}{288}(x-8)^2$$

The desired approximation is $\sqrt[3]{x} \approx T_2(x) = 2 + \frac{1}{12}(x-8) - \frac{1}{288}(x-8)^2$.

(b) The Taylor series is not alternating when x < 8, so we can't use the Alternating Series Estimation Theorem in this example. But using Taylor's Formula we can write

$$R_2(x) = \frac{f'''(z)}{3!}(x-8)^3 = \frac{10}{27}z^{-8/3}\frac{(x-8)^3}{3!} = \frac{5(x-8)^3}{81z^{8/3}}$$

where z lies between 8 and x. In order to estimate the error we note that if $7 \le x \le 9$, then $-1 \le x - 8 \le 1$, so $|x - 8| \le 1$ and therefore $|x - 8|^3 \le 1$. Also, since z > 7, we have

$$z^{8/3} > 7^{8/3} > 179$$

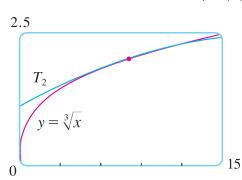
and so

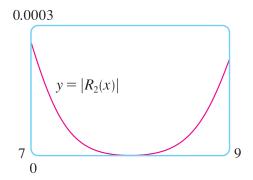
$$|R_2(x)| \le \frac{5|x-8|^3}{81z^{8/3}} < \frac{5\cdot 1}{81\cdot 179} < 0.0004$$

Thus if $7 \le x \le 9$, the approximation in part (a) is accurate to within 0.0004.

Let's use a graphing device to check the calculation in Example 1. The Figure below (left) shows that the graphs of $y = \sqrt[3]{x}$ and $y = T_2(x)$ are very close to each other when x is near 8. The Figure on the right shows the graph of $|R_2(x)|$ computed from the expression

$$|R_2(x)| = |\sqrt[3]{x} - T_2(x)|$$





We see from the graph that

$$|R_2(x)| < 0.0003$$

when $7 \le x \le 9$. Thus the error estimate from graphical methods is slightly better than the 0.0004 error estimate from Taylor's Formula in this case.

EXAMPLE 2:

(a) What is the maximum error possible in using the approximation

$$\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

when $-0.3 \le x \le 0.3$? Use this approximation to find $\sin 12^{\circ}$ correct to six decimal places.

(b) For what values of x is this approximation accurate to within 0.00005?

Solution:

(a) Notice that the Maclaurin series

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

is alternating for all nonzero values of x, and the successive terms decrease in size because |x| < 1, so we can use the Alternating Series Estimation Theorem. The error in approximating $\sin x$ by the first three terms of its Maclaurin series is at most

$$\left| \frac{x^7}{7!} \right| = \frac{|x|^7}{5040}$$

If $-0.3 \le x \le 0.3$, then $|x| \le 0.3$, so the error is smaller than

$$\frac{(0.3)^7}{5040} \approx 4.3 \times 10^{-8}$$

To find sin 12° we first convert to radian measure.

$$\sin 12^{\circ} = \sin \left(\frac{12\pi}{180}\right) = \sin \left(\frac{\pi}{15}\right) \approx \frac{\pi}{15} - \left(\frac{\pi}{15}\right)^{3} \frac{1}{3!} + \left(\frac{\pi}{15}\right)^{5} \frac{1}{5!} \approx 0.20791169$$

Thus, correct to six decimal places, $\sin 12^{\circ} \approx 0.207912$.

(b) The error will be smaller than 0.00005 if

$$\frac{|x|^7}{5040} < 0.00005$$

Solving this inequality for x, we get

$$|x|^7 < 0.252$$
 or $|x| < (0.252)^{1/7} \approx 0.821$

So the given approximation is accurate to within 0.00005 when |x| < 0.82.

What if we had used Taylor's Formula to solve Example 2? The remainder term is

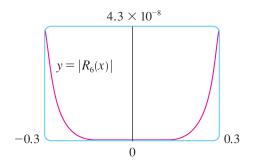
$$R_6(x) = \frac{f^{(7)}(z)}{7!}x^7 = -\cos z \, \frac{x^7}{7!}$$

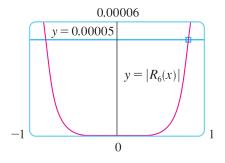
(Note that $T_5 = T_6$.) But $|-\cos z| \le 1$, so $|R_6(x)| \le |x|^7/7!$ and we get the same estimates as with the Alternating Series Estimation Theorem.

What about graphical methods? The Figure below (left) shows the graph of

$$|R_6(x)| = \left| \sin x - \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5 \right) \right|$$

and we see from it that $|R_6(x)| < 4.3 \times 10^{-8}$ when $|x| \le 0.3$. This is the same estimate that we obtained in Example 2. For part (b) we want $|R_6(x)| < 0.00005$, so we graph both $y = |R_6(x)|$ and y = 0.00005 in the Figure below (right). By placing the cursor on the right intersection point we find that the inequality is satisfied when |x| < 0.82. Again this is the same estimate that we obtained in the solution to Example 2.





If we had been asked to approximate $\sin 72^{\circ}$ instead of $\sin 12^{\circ}$ in Example 2, it would have been wise to use the Taylor polynomials at $a = \pi/3$ (instead of a = 0) because they are better approximations to $\sin x$ for values of x close to $\pi/3$. Notice that 72° is close to 60° (or $\pi/3$ radians) and the derivatives of $\sin x$ are easy to compute at $\pi/3$.

The Figure on the right shows the graphs of the Maclaurin polynomial approximations

$$T_1(x) = x$$
 $T_3(x) = x - \frac{x^3}{3!}$ $T_5(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$ $T_7(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$

to the sine curve. You can see that as n increases, $T_n(x)$ is a good approximation to $\sin x$ on a larger and larger interval.