
Section 8.8 Applications of Taylor Polynomials

Applications of Taylor Polynomials

Approximating Functions by Polynomials

Suppose that f(x) is equal to the sum of its Taylor series at a:

f(x) =
∞∑

n=0

f (n)(a)

n!
(x − a)n

In Section 8.7 we introduced the notation Tn(x) for the nth partial sum of this series and called
it the nth-degree Taylor polynomial of f at a. Thus

Tn(x) =
n∑

i=0

f (i)(a)

i!
(x − a)i = f(a) +

f ′(a)

1!
(x − a) +

f ′′(a)

2!
(x − a)2 + . . . +

f (n)(a)

n!
(x − a)n

Since f is the sum of its Taylor series, we know that Tn(x) → f(x) as n → ∞ and so Tn can be
used as an approximation to f : f(x) ≈ Tn(x). Notice that the first-degree Taylor polynomial

T1(x) = f(a) + f ′(a)(x − a)

is the same as the linearization of f at a that we discussed in Section 2.8. Notice also that T1

and its derivative have the same values at a that f and f ′ have. In general, it can be shown
that the derivatives of Tn at a agree with those of f up to and including derivatives of order n.

To illustrate these ideas let’s take another look at the graphs of y = ex and its first few Taylor
polynomials, as shown in the Figure below. The graph of T1 is the tangent line to y = ex at
(0, 1); this tangent line is the best linear approximation to ex near (0, 1). The graph of T2 is
the parabola y = 1 + x + x2/2, and the graph of T3 is the cubic curve y = 1 + x + x2/2 + x3/6,
which is a closer fit to the exponential curve y = ex than T2. The next Taylor polynomial T4

would be an even better approximation, and so on.

The values in the Table above give a numerical demonstration of the convergence of the Taylor
polynomials Tn(x) to the function y = ex. We see that when x = 0.2 the convergence is very
rapid, but when x = 3 it is somewhat slower. In fact, the farther x is from 0, the more slowly
Tn(x) converges to ex.
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When using a Taylor polynomial Tn to approximate a function f , we have to ask the questions:
How good an approximation is it? How large should we take n to be in order to achieve a
desired accuracy? To answer these questions we need to look at the absolute value of the
remainder:

|Rn(x)| = |f(x) − Tn(x)|
There are three possible methods for estimating the size of the error:

1. If a graphing device is available, we can use it to graph |Rn(x)| and thereby estimate the
error.

2. If the series happens to be an alternating series, we can use the Alternating Series Estimation
Theorem.

3. In all cases we can use Taylor’s Formula, which says that

Rn(x) =
f (n+1)(z)

(n + 1)!
(x − a)n+1 where x < z < a

EXAMPLE 1:

(a) Approximate the function f(x) = 3
√

x by a Taylor polynomial of degree 2 at a = 8.

(b) How accurate is this approximation when 7 ≤ x ≤ 9?

Solution:

(a) We have
f(x) = 3

√
x = x1/3 f(8) = 2

f ′(x) =
1

3
x−2/3 f ′(8) =

1

12

f ′′(x) = −2

9
x−5/3 f ′′(8) = − 1

144

f ′′′(x) =
10

27
x−8/3

Thus the second-degree Taylor polynomial is

T2(x) = f(8) +
f ′(8)

1!
(x − 8) +

f ′′(8)

2!
(x − 8)2 = 2 +

1

12
(x − 8) − 1

288
(x − 8)2

The desired approximation is 3
√

x ≈ T2(x) = 2 +
1

12
(x − 8) − 1

288
(x − 8)2.

(b) The Taylor series is not alternating when x < 8, so we can’t use the Alternating Series
Estimation Theorem in this example. But using Taylor’s Formula we can write

R2(x) =
f ′′′(z)

3!
(x − 8)3 =

10

27
z−8/3 (x − 8)3

3!
=

5(x − 8)3

81z8/3

where z lies between 8 and x. In order to estimate the error we note that if 7 ≤ x ≤ 9, then
−1 ≤ x − 8 ≤ 1, so |x − 8| ≤ 1 and therefore |x − 8|3 ≤ 1. Also, since z > 7, we have

z8/3 > 78/3 > 179

and so

|R2(x)| ≤ 5|x − 8|3

81z8/3
<

5 · 1
81 · 179

< 0.0004

Thus if 7 ≤ x ≤ 9, the approximation in part (a) is accurate to within 0.0004.
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Let’s use a graphing device to check the calculation in Example 1. The Figure below (left)
shows that the graphs of y = 3

√
x and y = T2(x) are very close to each other when x is near 8.

The Figure on the right shows the graph of |R2(x)| computed from the expression

|R2(x)| = | 3
√

x − T2(x)|

We see from the graph that
|R2(x)| < 0.0003

when 7 ≤ x ≤ 9. Thus the error estimate from graphical methods is slightly better than the
0.0004 error estimate from Taylor’s Formula in this case.

EXAMPLE 2:

(a) What is the maximum error possible in using the approximation

sin x ≈ x − x3

3!
+

x5

5!

when −0.3 ≤ x ≤ 0.3? Use this approximation to find sin 12o correct to six decimal places.

(b) For what values of x is this approximation accurate to within 0.00005?

Solution:

(a) Notice that the Maclaurin series

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ . . .

is alternating for all nonzero values of x, and the successive terms decrease in size because
|x| < 1, so we can use the Altemating Series Estimation Theorem. The error in approximating
sin x by the first three terms of its Maclaurin series is at most∣∣∣∣x7

7!

∣∣∣∣ =
|x|7

5040

If −0.3 ≤ x ≤ 0.3, then |x| ≤ 0.3, so the error is smaller than

(0.3)7

5040
≈ 4.3 × 10−8

To find sin 12o we first convert to radian measure.

sin 12o = sin

(
12π

180

)
= sin

( π

15

)
≈ π

15
−

( π

15

)3 1

3!
+

( π

15

)5 1

5!
≈ 0.20791169

Thus, correct to six decimal places, sin 12o ≈ 0.207912.
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(b) The error will be smaller than 0.00005 if

|x|7

5040
< 0.00005

Solving this inequality for x, we get

|x|7 < 0.252 or |x| < (0.252)1/7 ≈ 0.821

So the given approximation is accurate to within 0.00005 when |x| < 0.82.

What if we had used Taylor’s Formula to solve Example 2? The remainder term is

R6(x) =
f (7)(z)

7!
x7 = − cos z

x7

7!

(Note that T5 = T6.) But | − cos z| ≤ 1, so |R6(x)| ≤ |x|7/7! and we get the same estimates as
with the Alternating Series Estimation Theorem.

What about graphical methods? The Figure below (left) shows the graph of

|R6(x)| =

∣∣∣∣sin x −
(

x − 1

6
x3 +

1

120
x5

)∣∣∣∣
and we see from it that |R6(x)| < 4.3× 10−8 when |x| ≤ 0.3. This is the same estimate that we
obtained in Example 2. For part (b) we want |R6(x)| < 0.00005, so we graph both y = |R6(x)|
and y = 0.00005 in the Figure below (right). By placing the cursor on the right intersection
point we find that the inequality is satisfied when |x| < 0.82. Again this is the same estimate
that we obtained in the solution to Example 2.

If we had been asked to approximate sin 72o instead of sin 12o in Example 2, it would have
been wise to use the Taylor polynomials at a = π/3 (instead of a = 0) because they are better
approximations to sinx for values of x close to π/3. Notice that 72o is close to 60o (or π/3
radians) and the derivatives of sin x are easy to compute at π/3.

The Figure on the right shows the graphs of the Maclaurin polynomial approximations

T1(x) = x T3(x) = x − x3

3!

T5(x) = x − x3

3!
+

x5

5!
T7(x) = x − x3

3!
+

x5

5!
− x7

7!

to the sine curve. You can see that as n increases, Tn(x) is a good approximation to sinx on a
larger and larger interval.
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