Inverse Functions and Logarithms

DEFINITION: A function \(f \) is called a one-to-one function if it never takes on the same value twice; that is,

\[f(x_1) \neq f(x_2) \text{ whenever } x_1 \neq x_2 \]

HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once.

EXAMPLES:

1. Functions \(x, x^3, x^5, 1/x, \) etc. are one-to-one, since if \(x_1 \neq x_2 \), then

\[x_1 \neq x_2, \quad x_1^3 \neq x_2^3, \quad x_1^5 \neq x_2^5, \quad \frac{1}{x_1} \neq \frac{1}{x_2} \]

2. Functions \(x^2, x^4, \sin x, \) etc. are not one-to-one, since

\[(-1)^2 = 1^2, \quad (-1)^4 = 1^4, \quad \sin 0 = \sin \pi \]

DEFINITION: Let \(f \) be a one-to-one function with domain \(A \) and range \(B \). Then its inverse function \(f^{-1} \) has domain \(B \) and range \(A \) and is defined by

\[f^{-1}(y) = x \iff f(x) = y \] \((*)\)

for any \(y \) in \(B \).

So, we can reformulate \((*)\) as

\[(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x \text{ for every } x \text{ in the domain of } f \]

\[(f \circ f^{-1})(x) = f(f^{-1}(x)) = x \text{ for every } x \text{ in the domain of } f^{-1} \]

IMPORTANT: Do not confuse \(f^{-1} \) with \(\frac{1}{f} \).
(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x \text{ for every } x \text{ in the domain of } f

(f \circ f^{-1})(x) = f(f^{-1}(x)) = x \text{ for every } x \text{ in the domain of } f^{-1}

EXAMPLES:

1. Let \(f(x) = x^3 \), then \(f^{-1}(x) = \sqrt[3]{x} \), since
 \[f^{-1}(f(x)) = f^{-1}(x^3) = \sqrt[3]{x^3} = x \quad \text{and} \quad f(f^{-1}(x)) = f(\sqrt[3]{x}) = (\sqrt[3]{x})^3 = x \]

2. Let \(f(x) = x^3 + 1 \), then \(f^{-1}(x) = \sqrt[3]{x - 1} \), since
 \[f^{-1}(f(x)) = f^{-1}(x^3 + 1) = \sqrt[3]{x^3 + 1} - 1 = x \quad \text{and} \quad f(f^{-1}(x)) = f(\sqrt[3]{x - 1}) = (\sqrt[3]{x - 1})^3 + 1 = x \]

3. Let \(f(x) = 2x \), then \(f^{-1}(x) = \frac{1}{2}x \), since
 \[f^{-1}(f(x)) = f^{-1}(2x) = \frac{1}{2}(2x) = x \quad \text{and} \quad f(f^{-1}(x)) = f\left(\frac{1}{2}x\right) = 2\left(\frac{1}{2}x\right) = x \]

4. Let \(f(x) = x \), then \(f^{-1}(x) = x \), since
 \[f^{-1}(f(x)) = f^{-1}(x) = x \quad \text{and} \quad f(f^{-1}(x)) = f(x) = x \]

5. Let \(f(x) = 7x + 2 \), then \(f^{-1}(x) = \frac{x - 2}{7} \), since
 \[f^{-1}(f(x)) = f^{-1}(7x + 2) = \frac{(7x + 2) - 2}{7} = x \quad \text{and} \quad f(f^{-1}(x)) = f\left(\frac{x - 2}{7}\right) = 7\left(\frac{x - 2}{7}\right) + 2 = x \]

Solution: We have:

Step 1: Replace \(f(x) \) by \(y \):
 \[y = 7x + 2 \]

Step 2: Solve for \(x \):
 \[y = 7x + 2 \quad \implies \quad y - 2 = 7x \quad \implies \quad \frac{y - 2}{7} = x \]

Step 3: Replace \(x \) by \(f^{-1}(x) \) and \(y \) by \(x \):
 \[f^{-1}(x) = \frac{x - 2}{7} \]

6. Let \(f(x) = (3x - 2)^5 + 2 \). Find \(f^{-1}(x) \).
6. Let \(f(x) = (3x - 2)^5 + 2 \). Find \(f^{-1}(x) \).

Solution: We have:

Step 1: Replace \(f(x) \) by \(y \):

\[y = (3x - 2)^5 + 2 \]

Step 2: Solve for \(x \):

\[y = (3x - 2)^5 + 2 \implies y - 2 = (3x - 2)^5 \implies \sqrt[5]{y - 2} = x - 2 \implies \sqrt[5]{y - 2} + 2 = 3x \]

therefore

\[x = \frac{\sqrt[5]{y - 2} + 2}{3} \]

Step 3: Replace \(x \) by \(f^{-1}(x) \) and \(y \) by \(x \):

\[f^{-1}(x) = \frac{\sqrt[5]{x - 2} + 2}{3} \]

7. Let \(f(x) = \frac{3x - 5}{4 - 2x} \). Find \(f^{-1}(x) \).

8. Let \(f(x) = \sqrt{x} \). Find \(f^{-1}(x) \).
7. Let \(f(x) = \frac{3x - 5}{4 - 2x} \), then \(f^{-1}(x) = \frac{4x + 5}{3 + 2x} \).

Solution: We have:

Step 1: Replace \(f(x) \) by \(y \):

\[
y = \frac{3x - 5}{4 - 2x}
\]

Step 2: Solve for \(x \):

\[
y = \frac{3x - 5}{4 - 2x} \implies y(4 - 2x) = 3x - 5 \implies 4y - 2xy = 3x - 5 \implies 4y + 5 = 3x + 2xy
\]

therefore

\[
4y + 5 = x(3 + 2y) \implies \frac{4y + 5}{3 + 2y} = x
\]

Step 3: Replace \(x \) by \(f^{-1}(x) \) and \(y \) by \(x \):

\[
f^{-1}(x) = \frac{4x + 5}{3 + 2x}
\]

8. Let \(f(x) = \sqrt{x} \), then \(f^{-1}(x) = x^2, \ x \geq 0 \).

IMPORTANT:

\[
\text{domain of } f^{-1} = \text{range of } f
\]

\[
\text{range of } f^{-1} = \text{domain of } f
\]

9. Let \(f(x) = \sqrt{3x - 2} \), then \(f^{-1}(x) = \frac{1}{3}(x^2 + 2), \ x \geq 0 \) (see Appendix, page 9).

10. Let \(f(x) = \sqrt{x - 1} \), then \(f^{-1}(x) = x^4 + 1, \ x \geq 0 \) (see Appendix, page 9).

11. Let \(f(x) = \sqrt{x + 5} + 1 \), then \(f^{-1}(x) = (x - 1)^2 - 5, \ x \geq 1 \) (see Appendix, page 10).

12. Let \(f(x) = \sqrt[4]{2x - 7} + 5 \). Find \(f^{-1}(x) \).
12. Let \(f(x) = \sqrt[4]{2x-7} + 5 \), then \(f^{-1}(x) = \frac{(x-5)^4 + 7}{2} \), \(x \geq 5 \) (see Appendix, page 10).

13. The function \(f(x) = x^2 \) is not invertible, since it is not a one-to-one function.

REMARK: Similarly, \(x^4, \ x^{10}, \ \sin x, \ \cos x, \ \text{etc.} \)

are not invertable functions.

14. The function \(f(x) = (x + 1)^2 \) is not invertible.

15. Let \(f(x) = x^2, \ x \geq 0 \), then \(f^{-1}(x) = \sqrt{x}, \ x \geq 0 \).

16. Let \(f(x) = x^2, \ x \geq 2 \), then \(f^{-1}(x) = \sqrt{x}, \ x \geq 4 \).

17. Let \(f(x) = x^2, \ x < -3 \), then \(f^{-1}(x) = -\sqrt{x}, \ x > 9 \).

18. The function \(f(x) = x^2, \ x > -1 \) is not invertible.

19. Let \(f(x) = (x + 1)^2, \ x > 3 \). Find \(f^{-1}(x) \).

20. Let \(f(x) = (1 + 2x)^2, \ x \leq -1 \). Find \(f^{-1}(x) \).
19. Let \(f(x) = (x + 1)^2, x > 3 \), then \(f^{-1}(x) = \sqrt{x} - 1, x > 16 \) (see Appendix, page 11).

20. Let \(f(x) = (1 + 2x)^2, x \leq -1 \), then \(f^{-1}(x) = -\sqrt{x} + 1 = \frac{1}{2}, x \geq 1 \) (see Appendix, page 11).

THEOREM: If \(f \) has an inverse function \(f^{-1} \), then the graphs of \(y = f(x) \) and \(y = f^{-1}(x) \) are reflections of one another about the line \(y = x \); that is, each is the mirror image of the other with respect to that line.

![Graph of functions](image)

THEOREM: If \(f \) is a one-to-one continuous function defined on an interval, then its inverse function \(f^{-1} \) is also continuous.

THEOREM (Differentiability of Inverse Functions): If \(f \) is a one-to-one differentiable function with inverse function \(f^{-1} \) and \(f'(f^{-1}(a)) \neq 0 \), then the inverse function is differentiable at \(a \) and

\[
(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}
\]

EXAMPLE: If \(f(x) = x^5 + x + 2 \), find \((f^{-1})'(4) \).

Solution 1: We have \((f^{-1})'(4) = \frac{1}{f'(f^{-1}(4))} \). Since \(f(1) = 4 \), it follows that \(f^{-1}(4) = 1 \). Hence

\[
(f^{-1})'(4) = \frac{1}{f'(f^{-1}(4))} = \frac{1}{f'(1)}
\]

But \(f'(x) = 5x^4 + 1 \), therefore \(f'(1) = 5 \cdot 1^4 + 1 = 6 \). This yields

\[
(f^{-1})'(4) = \frac{1}{f'(1)} = \frac{1}{6}
\]

Solution 2: One can see that \(y = f^{-1}(x) \) satisfies the equation \(x = y^5 + y + 2 \). To find \(y' \) we differentiate both sides:

\[
x' = (y^5 + y + 2)' \implies 1 = 5y^4 \cdot y' + y' \implies 1 = y'(5y^4 + 1) \implies y' = \frac{1}{5y^4 + 1}
\]

Note that if \(x = 4 \), then \(y = 1 \) (solution of \(4 = y^5 + y + 2 \)). Therefore

\[
(f^{-1})'(4) = y'(4) = \frac{1}{5 \cdot 1^4 + 1} = \frac{1}{6}
\]
Logarithmic Functions

If \(a > 0 \) and \(a \neq 1 \), the exponential function \(f(x) = a^x \) is either increasing or decreasing and so it is one-to one by the Horizontal Line Test. It therefore has an inverse function \(f^{-1}(x) \), which is called the logarithmic function with base \(a \) and is denoted by \(\log_a x \). We have

\[
\log_a x = y \iff a^y = x
\]

BASIC PROPERTIES: \(f(x) = \log_a x \) is a continuous function with domain \((0, \infty)\) and range \((-\infty, \infty)\). Moreover,

\[
\log_a(a^x) = x \text{ for every } x \in \mathbb{R}, \quad a^\log_a x = x \text{ for every } x > 0
\]

REMARK: It immediately follows from property 1 that

\[
\log_a a = 1, \quad \log_a 1 = 0
\]

LAWS OF LOGARITHMS: If \(x \) and \(y \) are positive numbers, then

1. \(\log_a(xy) = \log_a x + \log_a y \).
2. \(\log_a \left(\frac{x}{y} \right) = \log_a x - \log_a y \).
3. \(\log_a (x^r) = r \log_a x \) where \(r \) is any real number.

EXAMPLES:
1. Use the laws of logarithms to evaluate \(\log_3 270 - \log_3 10 \).
Solution: We have

\[
\log_3 270 - \log_3 10 = \log_3 \left(\frac{270}{10} \right) = \log_3 27 = \log_3 3^3 = 3 \log_3 3 = 3 \cdot 1 = 3
\]

2. Use the laws of logarithms to evaluate \(\log_2 12 + \log_2 3 - \log_2 9 \).
2. Use the laws of logarithms to evaluate $\log_2 12 + \log_2 3 - \log_2 9$.

Solution: We have

$$\log_2 12 + \log_2 3 - \log_2 9 = \log_2 (12 \cdot 3) - \log_2 9 = \log_2 \left(\frac{12 \cdot 3}{9} \right) = \log_2 4 = \log_2 2^2 = 2 \log_2 2 = 2 \cdot 1 = 2$$

BASIC CALCULUS PROPERTIES:

1. If $a > 1$, then $\lim_{x \to \infty} \log_a x = \infty$ and $\lim_{x \to 0^+} \log_a x = -\infty$.

2. If $0 < a < 1$, then $\lim_{x \to \infty} \log_a x = -\infty$ and $\lim_{x \to 0^+} \log_a x = \infty$.

Natural Logarithms

DEFINITION: The logarithm with base e is called the **natural logarithm** and has a special notation:

$$\log_e x = \ln x$$

BASIC PROPERTIES:

1. $\ln(e^x) = x$ for every $x \in \mathbb{R}$.

2. $e^{\ln x} = x$ for every $x > 0$.

REMARK: It immediately follows from property 1 that

$$\ln e = 1$$

IMPORTANT FORMULA: For any positive a and b ($a, b \neq 1$) we have

$$\log_a x = \frac{\log_b x}{\log_b a}$$

In particular, if $a = e$, then

$$\log_e x = \frac{\ln x}{\ln b}$$
9. Let \(f(x) = \sqrt{3x - 2} \), then \(f^{-1}(x) = \frac{1}{3}(x^2 + 2), \ x \geq 0 \).

Solution: We have:

Step 1: Replace \(f(x) \) by \(y \):

\[
y = \sqrt{3x - 2}
\]

Step 2: Solve for \(x \):

\[
y = \sqrt{3x - 2} \quad \Rightarrow \quad y^2 = 3x - 2 \quad \Rightarrow \quad y^2 + 2 = 3x
\]

therefore

\[
x = \frac{1}{3}(y^2 + 2)
\]

Step 3: Replace \(x \) by \(f^{-1}(x) \) and \(y \) by \(x \):

\[
f^{-1}(x) = \frac{1}{3}(x^2 + 2)
\]

Finally, since the range of \(f \) is all nonnegative numbers, it follows that the domain of \(f^{-1} \) is \(x \geq 0 \).

10. Let \(f(x) = \sqrt[4]{x - 1} \), then \(f^{-1}(x) = x^4 + 1, \ x \geq 0 \).

Solution: We have:

Step 1: Replace \(f(x) \) by \(y \):

\[
y = \sqrt[4]{x - 1}
\]

Step 2: Solve for \(x \):

\[
y = \sqrt[4]{x - 1} \quad \Rightarrow \quad y^4 = x - 1
\]

therefore

\[
x = y^4 + 1
\]

Step 3: Replace \(x \) by \(f^{-1}(x) \) and \(y \) by \(x \):

\[
f^{-1}(x) = x^4 + 1
\]

Finally, since the range of \(f \) is all nonnegative numbers, it follows that the domain of \(f^{-1} \) is \(x \geq 0 \).
11. Let \(f(x) = \sqrt{x+5} + 1 \), then \(f^{-1}(x) = (x - 1)^2 - 5, \ x \geq 1. \)

Solution: We have:

Step 1: Replace \(f(x) \) by \(y \):
\[
y = \sqrt{x+5} + 1
\]

Step 2: Solve for \(x \):
\[
y = \sqrt{x+5} + 1 \implies y - 1 = \sqrt{x+5} \implies (y - 1)^2 = x + 5
\]
therefore
\[
x = (y - 1)^2 - 5
\]

Step 3: Replace \(x \) by \(f^{-1}(x) \) and \(y \) by \(x \):
\[
f^{-1}(x) = (x - 1)^2 - 5
\]

Finally, since the range of \(f \) is all numbers \(\geq 1 \), it follows that the domain of \(f^{-1} \) is \(x \geq 1. \)

12. Let \(f(x) = \sqrt{2x - 7} + 5 \), then \(f^{-1}(x) = \frac{(x - 5)^4 + 7}{2}, \ x \geq 5. \)

Solution: We have:

Step 1: Replace \(f(x) \) by \(y \):
\[
y = \sqrt{2x - 7} + 5
\]

Step 2: Solve for \(x \):
\[
y = \sqrt{2x - 7} + 5 \implies y - 5 = \sqrt{2x - 7} \implies (y - 5)^4 = 2x - 7 \implies (y - 5)^4 + 7 = 2x
\]
therefore
\[
x = \frac{(y - 5)^4 + 7}{2}
\]

Step 3: Replace \(x \) by \(f^{-1}(x) \) and \(y \) by \(x \):
\[
f^{-1}(x) = \frac{(x - 5)^4 + 7}{2}
\]

Finally, since the range of \(f \) is all numbers \(\geq 5 \), it follows that the domain of \(f^{-1} \) is \(x \geq 5. \)
19. Let \(f(x) = (x + 1)^2, x > 3, \) then \(f^{-1}(x) = \sqrt{x} - 1, x > 16. \)

Solution: We have:

Step 1: Replace \(f(x) \) by \(y \):
\[
y = (x + 1)^2
\]

Step 2: Solve for \(x \):
\[
y = (x + 1)^2 \quad \text{\(x \) is positive} \quad \sqrt{y} = x + 1
\]
therefore
\[
x = \sqrt{y} - 1
\]

Step 3: Replace \(x \) by \(f^{-1}(x) \) and \(y \) by \(x \):
\[
f^{-1}(x) = \sqrt{x} - 1
\]

To find the domain of \(f^{-1} \) we note that the range of \(f \) is all numbers \(> 16 \). Indeed, since \(x > 3 \), we have
\[
f(x) = (x + 1)^2 > (3 + 1)^2 = 4^2 = 16
\]
From this it follows that the domain of \(f^{-1} \) is \(x > 16 \).

20. Let \(f(x) = (1 + 2x)^2, x \leq -1, \) then \(f^{-1}(x) = -\sqrt{x + 1}, x \geq 1. \)

Solution: We have:

Step 1: Replace \(f(x) \) by \(y \):
\[
y = (1 + 2x)^2
\]

Step 2: Solve for \(x \):
\[
y = (1 + 2x)^2 \quad \text{\(x \leq -1 \)} \quad -\sqrt{y} = 1 + 2x \quad \Rightarrow \quad -\sqrt{y} - 1 = 2x
\]
therefore
\[
x = -\frac{\sqrt{y} + 1}{2}
\]

Step 3: Replace \(x \) by \(f^{-1}(x) \) and \(y \) by \(x \):
\[
f^{-1}(x) = -\frac{\sqrt{x} + 1}{2}
\]

To find the domain of \(f^{-1} \) we note that the range of \(f \) is all numbers \(\geq 1 \). Indeed, since \(x \leq -1 \), we have
\[
f(x) = (1 + 2x)^2 \geq (1 + 2 \cdot (-1))^2 = (1 - 2)^2 = (-1)^2 = 1
\]
From this it follows that the domain of \(f^{-1} \) is \(x \geq 1. \)