Implicit Differentiation

Some functions can be described by expressing one variable explicitly in terms of another variable — for example,

\[y = x^2, \quad y = \sqrt{\frac{1 - x}{1 + x^3}}, \quad y = \tan 2x \]

or, in general, \(y = f(x) \). Some functions, however, are defined implicitly by a relation between \(x \) and \(y \) such that

\[x^2 + y^2 = 1, \quad x^3 + y^3 = 4xy, \quad (x^2 + y^2 - 2x)^2 = 4(x^2 + y^2) \]

In some cases it is possible to solve such an equation for \(x \) or for \(y \), but sometimes it is impossible. One of the main goals of Section 2.6 is to show how to find derivatives of implicitly defined functions.

EXAMPLE: Find an equation of the tangent line to \(y = x^2 \) at the point \((2, 4)\).

Solution: The graph of the curve \(y = x^2 \) is a parabola. Clearly,

\[y' = (x^2)' = 2x \]

To find an equation of the tangent line to \(y = x^2 \) at the point \((2, 4)\) we note that

\[m = y'(2) = 2 \cdot 2 = 4 \]

therefore

\[y - y_0 = m(x - x_0) \implies y - 4 = 4(x - 2) \implies y = 4x - 4 \]

EXAMPLE: Find equations of the tangent lines to \(x = y^2 \) at the points \((4, 2)\) and \((4, -2)\).
EXAMPLE: Find equations of the tangent lines to \(x = y^2 \) at the points \((4, 2)\) and \((4, -2)\).

Solution 1: The graph of the curve \(x = y^2 \) is a parabola. We have

\[
x = y^2 \quad \Rightarrow \quad y = \begin{cases} \sqrt{x} & \text{if } y \geq 0 \\ -\sqrt{x} & \text{if } y < 0 \end{cases}
\]

Clearly, if \(y = \sqrt{x} \), then

\[
y' = (x^{1/2})' = \frac{1}{2}x^{1/2-1} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}} \quad (1)
\]

Similarly, if \(y = -\sqrt{x} \), then

\[
y' = (-x^{1/2})' = -\frac{1}{2}x^{1/2-1} = -\frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}} \quad (2)
\]

To find an equation of the tangent line to \(y^2 = x \) at the point \((4, 2)\) we note that by (1) we have

\[
m_1 = y'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}
\]

therefore

\[
y - y_1 = m_1(x - x_1) \quad \Rightarrow \quad y - 2 = \frac{1}{4}(x - 4) \quad \Rightarrow \quad y = \frac{1}{4}x + 1
\]

Similarly, to find an equation of the tangent line to \(y^2 = x \) at the point \((4, -2)\) we note that

\[
m_2 = y'(4) = -\frac{1}{2\sqrt{4}} = -\frac{1}{4}
\]

therefore

\[
y - y_2 = m_2(x - x_2) \quad \Rightarrow \quad y - (-2) = -\frac{1}{4}(x - 4) \quad \Rightarrow \quad y = -\frac{1}{4}x - 1
\]

Solution 2: To find equations of the tangent lines to \(x = y^2 \) at the points \((4, 2)\) and \((4, -2)\) we first find \(\frac{dy}{dx} \) by differentiating both sides of \(x = y^2 \):

\[
x = y^2 \quad \Rightarrow \quad x' = (y^2)' \quad \Rightarrow \quad 1 = 2y \cdot y' \quad \Rightarrow \quad y' = \frac{1}{2y}
\]

It follows that

\[
m = y'(4) = \begin{cases} \frac{1}{2 \cdot 2} & \text{if } y = 2 \\ \frac{1}{2 \cdot (-2)} & \text{if } y = -2 \end{cases}
\]

therefore

\[
y - y_1 = m_1(x - x_1) \quad \Rightarrow \quad y - 2 = \frac{1}{4}(x - 4) \quad \Rightarrow \quad y = \frac{1}{4}x + 1 \quad \text{at } (4, 2)
\]

and

\[
y - y_2 = m_2(x - x_2) \quad \Rightarrow \quad y - (-2) = -\frac{1}{4}(x - 4) \quad \Rightarrow \quad y = -\frac{1}{4}x - 1 \quad \text{at } (4, -2)
\]
EXAMPLE: If \(x^2 + y^2 = 5 \), find \(\frac{dy}{dx} \). Then find an equation of the tangent line to \(x^2 + y^2 = 5 \) at the point (2, 1).

Solution: The graph of the curve \(x^2 + y^2 = 5 \) is a circle:

To find \(\frac{dy}{dx} \) we differentiate both sides:

\[
\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(5) \implies (x^2)' + (y^2)' = 0 \implies 2x \cdot x' + 2y \cdot y' = 0
\]

hence

\[
2x \cdot 1 + 2y \cdot y' = 0 \implies 2x + 2y \cdot y' = 0 \implies 2y \cdot y' = -2x \implies y' = -\frac{2x}{2y} = -\frac{x}{y}
\]

To find an equation of the tangent line to \(x^2 + y^2 = 5 \) at the point (2, 1) we note that

\[m = y'(2) = -\frac{2}{1} = -2 \]

therefore

\[y - y_0 = m(x - x_0) \implies y - 1 = -2 \cdot (x - 2) \implies y = -2x + 5 \]

EXAMPLE: If \(2x^2 + 3y^2 = 5 \), find \(\frac{dy}{dx} \). Then find an equation of the tangent line to \(2x^2 + 3y^2 = 5 \) at the point (1, 1).
EXAMPLE: If $2x^2 + 3y^2 = 5$, find $\frac{dy}{dx}$. Then find an equation of the tangent line to $2x^2 + 3y^2 = 5$ at the point (1, 1).

Solution: The graph of the curve $2x^2 + 3y^2 = 5$ is an ellipse:

To find $\frac{dy}{dx}$ we differentiate both sides:

$2x^2 + 3y^2 = 5 \implies (2x^2 + 3y^2)' = 5' \implies 2(x^2)' + 3(y^2)' = 0 \implies 2(2x \cdot x') + 3(2y \cdot y') = 0$

hence

$2(2x \cdot 1) + 3(2y \cdot y') = 0 \implies 4x + 6y \cdot y' = 0 \implies 6y \cdot y' = -4x \implies y' = -\frac{4x}{6y} = -\frac{2x}{3y}$

To find an equation of the tangent line to $2x^2 + 3y^2 = 5$ at the point (1, 1) we note that

$m = y'(1) = -\frac{2 \cdot 1}{3 \cdot 1} = -\frac{2}{3}$

therefore

$y - y_0 = m(x - x_0) \implies y - 1 = -\frac{2}{3}(x - 1) \implies y = -\frac{2}{3}x + \frac{5}{3}$

EXAMPLE: If $x^3 + y^3 = 4xy$, find $\frac{dy}{dx}$. Then find an equation of the tangent line to $x^3 + y^3 = 4xy$ at the point (2, 2). At what point in the first quadrant is the tangent line horizontal?
EXAMPLE: If \(x^3 + y^3 = 4xy \), find \(\frac{dy}{dx} \). Then find an equation of the tangent line to \(x^3 + y^3 = 4xy \) at the point \((2, 2)\). At what point in the first quadrant is the tangent line horizontal?

Solution: The graph of the curve \(x^3 + y^3 = 4xy \) is the folium of Descartes:

(a) To find \(\frac{dy}{dx} \) we differentiate both sides:

\[
x^3 + y^3 = 4xy \quad \Rightarrow \quad (x^3 + y^3)' = (4xy)' \quad \Rightarrow \quad (x^3)' + (y^3)' = (4xy)'
\]

Since \((4xy)' = 4(xy)' = 4(x'y + xy') = 4(1 \cdot y + xy') = 4(y + xy')\), this gives us

\[
3x^2 \cdot x' + 3y^2 \cdot y' = 4(y + xy') \quad \Rightarrow \quad 3x^2 + 3y^2 \cdot y' = 4y + 4xy' \quad \Rightarrow \quad 3y^2 \cdot y' - 4xy' = 4y - 3x^2
\]

hence

\[
y'(3y^2 - 4) = 4y - 3x^2 \quad \Rightarrow \quad y' = \frac{4y - 3x^2}{3y^2 - 4x}
\]

(b) To find an equation of the tangent line to \(x^3 + y^3 = 4xy \) at the point \((2, 2)\) we note that

\[
m = y'(2) = \frac{4 \cdot 2 - 3 \cdot 2^2}{3 \cdot 2^2 - 4 \cdot 2} = -1
\]

therefore

\[
y - y_0 = m(x - x_0) \quad \Rightarrow \quad y - 2 = -1 \cdot (x - 2) \quad \Rightarrow \quad y = -x + 4
\]
(c) The tangent line is horizontal if \(y' = 0 \). Using the expression for \(y' \) from part (a), we see that \(y' = 0 \) when \(4y - 3x^2 = 0 \) (provided that \(3y^2 - 4x \neq 0 \)). We have

\[
4y - 3x^2 = 0 \implies y = \frac{3}{4}x^2 \quad \quad \quad \quad x^3 + \left(\frac{3}{4}x^2 \right)^3 = 4x \left(\frac{3}{4}x^2 \right) \implies x^3 + \frac{27}{64}x^6 = 3x^3
\]

which gives

\[
\frac{27}{64}x^6 = 2x^3
\]

Dividing both sides by 2, we get \(\frac{27}{128}x^6 = x^3 \). Since \(x \neq 0 \) in the first quadrant, we can divide both sides by \(x^3 \) which implies

\[
\frac{27}{128}x^3 = 1 \implies x^3 = \frac{128}{27}
\]

hence

\[
x = \sqrt[3]{\frac{128}{27}} = \left\{ \frac{\sqrt[3]{128}}{\sqrt[3]{27}} = \frac{\sqrt{64}\cdot 2}{\sqrt[3]{27}} = \frac{\sqrt{64}\sqrt{2}}{\sqrt[3]{27}} = \frac{4\sqrt{2}}{3} \right\} = \frac{4}{3}\sqrt{2} \approx 1.6798947
\]

Plugging in this into \(y = \frac{3}{4}x^2 \), we get

\[
y = \frac{3}{4} \left(\frac{4}{3}\sqrt{2} \right)^2 = \frac{4}{3} \sqrt{4} \approx 2.1165347
\]

Finally, one can check that \(3y^2 - 4x \neq 0 \) at \(\left(\frac{4}{3}\sqrt{2}, \frac{4}{3}\sqrt{4} \right) \). Thus the tangent line is horizontal at \(\left(\frac{4}{3}\sqrt{2}, \frac{4}{3}\sqrt{4} \right) \), which is approximately \((1.6798947, 2.1165347) \). Looking at the figure, we see that our answer is reasonable.

EXAMPLE: If \((x^2+y^2-2x)^2 = 4(x^2+y^2)\), find an equation of the tangent line to \((x^2+y^2-2x)^2 = 4(x^2+y^2)\) at the point \((0, 2)\).
EXAMPLE: If \((x^2 + y^2 - 2x)^2 = 4(x^2 + y^2)\), find an equation of the tangent line to \((x^2 + y^2 - 2x)^2 = 4(x^2 + y^2)\) at the point \((0, 2)\).

Solution: The graph of the curve \((x^2 + y^2 - 2x)^2 = 4(x^2 + y^2)\) is the cardioid:

We differentiate both sides of \((x^2 + y^2 - 2x)^2 = 4(x^2 + y^2)\):

\[
[(x^2 + y^2 - 2x)^2]' = [4(x^2 + y^2)]' \implies 2(x^2 + y^2 - 2x)^2 \cdot (x^2 + y^2 - 2x)' = 4(x^2 + y^2)' \]

hence

\[
2(x^2 + y^2 - 2x)(2x + 2y \cdot y' - 2) = 4(2x + 2y \cdot y') \tag{3}
\]

To find slope of the tangent line to \((x^2 + y^2 - 2x)^2 = 4(x^2 + y^2)\) at the point \((0, 2)\) we replace \(x\) by 0 and \(y\) by 2 in (3):

\[
2(0^2 + 2^2 - 2 \cdot 2)(2 \cdot 0 + 2 \cdot 2 \cdot y' - 2) = 4(2 \cdot 0 + 2 \cdot 2 \cdot y') \implies 8(4y' - 2) = 4(4y')
\]

hence

\[
32y' - 16 = 16y' \implies 32y' - 16y' = 16 \implies 16y' = 16 \implies y' = \frac{16}{16} = 1
\]

so \(m = 1\), therefore

\[
y - y_0 = m(x - x_0) \implies y - 2 = 1 \cdot (x - 0) \implies y = x + 2
\]

REMARK: If we first find \(\frac{dy}{dx}\) for any \(x\) and then find the slope of the tangent line to \((x^2 + y^2 - 2x)^2 = 4(x^2 + y^2)\) at the point \((0, 2)\), the computations will be more complicated (see Appendix, page 10).
EXAMPLE: If \((x^2 + y^2)^3 = 4x^2y^2\), find \(\frac{dy}{dx}\).

Solution: The graph of the curve \((x^2 + y^2)^3 = 4x^2y^2\) is a rose curve:

\[
\begin{align*}
(x^2 + y^2)^3 &= 4x^2y^2 \\
\Rightarrow \quad [(x^2 + y^2)^3]' &= (4x^2y^2)'
\end{align*}
\]

hence

\[
3(x^2 + y^2)^{3-1} \cdot (x^2 + y^2)' = 4(x^2y^2)'
\]

Note that

\[
(x^2 + y^2)' = (x^2)' + (y^2)' = 2x + 2y \cdot y' = 2(x + y \cdot y')
\]

and

\[
(x^2y^2)' = (x^2)'y^2 + x^2(y^2)' = 2xy^2 + x^2 \cdot 2y \cdot y' = 2(xy^2 + x^2y \cdot y')
\]

Substituting (5) and (6) into (4), we obtain

\[
3(x^2 + y^2)^2 \cdot 2(x + y \cdot y') = 4 \cdot 2(xy^2 + x^2y \cdot y')
\]

\[
3(x^2 + y^2)(x + y \cdot y') = 4(xy^2 + x^2y \cdot y')
\]

\[
3(x^4 + 2x^2y^2 + y^4)(x + y \cdot y') = 4xy^2 + 4x^2y \cdot y'
\]

We now expand the parentheses and solve this equation for \(y'\):

\[
3x^5 + 3x^4y \cdot y' + 6x^3y^2 + 6x^2y^3 \cdot y' + 3xy^4 + 3y^5 \cdot y' = 4xy^2 + 4x^2y \cdot y'
\]

so

\[
3x^4y \cdot y' + 6x^2y^3 \cdot y' + 3y^5 \cdot y' - 4x^2y \cdot y' = -3x^5 - 6x^3y^2 - 3xy^4 + 4xy^2
\]

hence

\[
y'(3x^4y + 6x^2y^3 + 3y^5 - 4x^2y) = -3x^5 - 6x^3y^2 - 3xy^4 + 4xy^2
\]

therefore

\[
y' = \frac{-3x^5 - 6x^3y^2 - 3xy^4 + 4xy^2}{3x^4y + 6x^2y^3 + 3y^5 - 4x^2y} = \frac{3x^5 + 6x^3y^2 + 3y^4x - 4y^2x}{3y^5 + 6y^3x^2 + 3x^4y - 4x^2y}
\]
EXAMPLE: Find y' if $\sin(x + y) = y^2 \cos x$.

Solution: We have

$$\sin(x + y) = y^2 \cos x \implies (\sin(x + y))' = (y^2 \cos x)'$$

therefore

$$\cos(x + y) \cdot (x + y)' = (y^2)' \cos x + y^2(\cos x)'$$

hence

$$\cos(x + y) \cdot (1 + y') = 2y \cdot y' \cos x - y^2 \sin x$$

We now solve this equation for y':

$$\cos(x + y) + \cos(x + y) \cdot y' = 2y \cdot y' \cos x - y^2 \sin x$$

so

$$\cos(x + y) \cdot y' - 2y \cdot y' \cos x = -\cos(x + y) - y^2 \sin x$$

therefore

$$y'(\cos(x + y) - 2y \cos x) = -\cos(x + y) - y^2 \sin x$$

Dividing both sides by $\cos(x + y) - 2y \cos x$, we get

$$y' = \frac{-\cos(x + y) - y^2 \sin x}{\cos(x + y) - 2y \cos x} = \frac{\cos(x + y) + y^2 \sin x}{2y \cos x - \cos(x + y)}$$
EXAMPLE: If \((x^2 + y^2 - 2x)^2 = 4(x^2 + y^2)\), find \(\frac{dy}{dx}\).

Solution: To find \(\frac{dy}{dx}\) we differentiate both sides:
\[
(x^2 + y^2 - 2x)^2 = 4(x^2 + y^2) \implies [(x^2 + y^2 - 2x)^2]' = [4(x^2 + y^2)]'
\]

hence
\[
2(x^2 + y^2 - 2x)^{2-1} \cdot (x^2 + y^2 - 2x)' = 4(x^2 + y^2)'
\]
(7)

Note that
\[
(x^2 + y^2 - 2x)' = (x^2)' + (y^2)' - (2x)' = 2x + 2y \cdot y' - 2 = 2(x + y \cdot y' - 1)
\]
(8)

and
\[
(x^2 + y^2)' = (x^2)' + (y^2)' = 2x + 2y \cdot y'
\]
(9)

Substituting (8) and (9) into (7), we obtain
\[
2(x^2 + y^2 - 2x)(x + y \cdot y' - 1) = 2x + 2y \cdot y'
\]

We now expand the parentheses and solve this equation for \(y'\):
\[
x^3 + x^2y \cdot y' - x^2 + xy^2 + y^3 \cdot y' - y^2 - 2x^2 - 2xy \cdot y' + 2x = 2x + 2y \cdot y'
\]

so
\[
x^2y \cdot y' + y^3 \cdot y' - 2xy \cdot y' - 2y \cdot y' = -x^3 - xy^2 + 3x^2 + y^2
\]

hence
\[
y'(x^2y + y^3 - 2xy - 2y) = -x^3 - xy^2 + 3x^2 + y^2
\]

therefore
\[
y' = \frac{-x^3 - xy^2 + 3x^2 + y^2}{x^2y + y^3 - 2xy - 2y} = \frac{x^3 + xy^2 - 3x^2 - y^2}{y^3 + x^2y - 2xy - 2y}
\]
EXAMPLE: Sketch the curve $r = 1 + \sin \theta$, $0 \leq \theta \leq 2\pi$ (cardioid).

Solution: We have

\[
\begin{align*}
\text{r = 1 + sin(\theta), } & \text{theta = } \pi/6 \\
\text{r = 1 + sin(\theta), } & \text{theta = } 2\pi/6 \\
\text{r = 1 + sin(\theta), } & \text{theta = } 3\pi/6 \\
\text{r = 1 + sin(\theta), } & \text{theta = } 4\pi/6 \\
\text{r = 1 + sin(\theta), } & \text{theta = } 5\pi/6 \\
\text{r = 1 + sin(\theta), } & \text{theta = } 6\pi/6 \\
\text{r = 1 + sin(\theta), } & \text{theta = } 7\pi/6 \\
\text{r = 1 + sin(\theta), } & \text{theta = } 8\pi/6 \\
\text{r = 1 + sin(\theta), } & \text{theta = } 9\pi/6 \\
\text{r = 1 + sin(\theta), } & \text{theta = } 10\pi/6 \\
\text{r = 1 + sin(\theta), } & \text{theta = } 11\pi/6 \\
\text{r = 1 + sin(\theta), } & \text{theta = } 12\pi/6
\end{align*}
\]
EXAMPLE: Sketch the curve $r = 1 - \cos \theta$, $0 \leq \theta \leq 2\pi$ (cardioid).

Solution: We have