Continuity

DEFINITION 1: A function \(f \) is \textbf{continuous at a number} \(a \) if
\[
\lim_{{x \to a}} f(x) = f(a)
\]

REMARK: It follows from the definition that \(f \) is continuous at \(a \) if and only if
1. \(f(a) \) is defined.
2. \(\lim_{{x \to a^-}} f(x) \) and \(\lim_{{x \to a^+}} f(x) \) exist.
3. \(\lim_{{x \to a^-}} f(x) = \lim_{{x \to a^+}} f(x) = f(a) \).

REMARK: The discontinuities in parts (b) and (c) are called \textbf{removable discontinuities} because we could remove them by redefining \(f \) at just the single number 0. The discontinuity in part (d) is called \textbf{jump discontinuity} because the function “jumps” from one value to another. The discontinuities in parts (e) and (f) are called \textbf{infinite} or \textbf{essential discontinuities}.

EXAMPLE:
(a) The function
\[f(x) = \frac{1}{1-x^2} \]
is discontinuous at \(x = \pm 1 \), since \(f(x) \) is not defined at these points.

(b) The function
\[f(x) = \begin{cases}
2x - 1 & \text{if } x \leq 2 \\
x^2 & \text{if } x > 2
\end{cases} \]
is discontinuous at \(x = 2 \). In fact,
\[
\lim_{{x \to 2^-}} f(x) = \lim_{{x \to 2^-}} (2x - 1) = 2 \cdot 2 - 1 = 3 \quad \text{and} \quad \lim_{{x \to 2^+}} f(x) = \lim_{{x \to 2^+}} x^2 = 2^2 = 4
\]
so \(\lim_{{x \to 2^-}} f(x) \neq \lim_{{x \to 2^+}} f(x) \), therefore \(f(x) \) is discontinuous at \(x = 2 \).

EXAMPLE: Where are each of the following functions discontinuous?

(a) \(f(x) = \frac{x^2 - x - 2}{x - 2} \)
(b) \(f(x) = \begin{cases}
\frac{1}{x^2} & \text{if } x \neq 0 \\
1 & \text{if } x = 0
\end{cases} \)
(c) \(f(x) = \begin{cases}
\frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2 \\
1 & \text{if } x = 2
\end{cases} \)
EXAMPLE: Where are each of the following functions discontinuous?

(a) \(f(x) = \frac{x^2 - x - 2}{x - 2} \)

(b) \(f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \)

(c) \(f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2 \\ 1 & \text{if } x = 2 \end{cases} \)

Solution:

(a) The function

\[f(x) = \frac{x^2 - x - 2}{x - 2} \]

is discontinuous at \(x = 2 \), since \(f(x) \) is not defined at this point.

(b) The function

\[f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \]

is discontinuous at \(x = 0 \), since \(\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1}{x^2} \) does not exist.

(c) The function

\[f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2 \\ 1 & \text{if } x = 2 \end{cases} \]

is discontinuous at \(x = 2 \), since

\[\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{x^2 - x - 2}{x - 2} = \lim_{x \to 2^-} \frac{(x - 2)(x + 1)}{x - 2} = \lim_{x \to 2^-} (x + 1) = 3 \]

which is not equal to \(f(2) = 1 \).
DEFINITION 2: A function f is **continuous from the right at a number** a if

$$\lim_{x \to a^+} f(x) = f(a)$$

and f is **continuous from the left at** a if

$$\lim_{x \to a^-} f(x) = f(a)$$

EXAMPLE: The graph of a function g is shown.

(a) At which points a in \{0, 1, 2, 3, 4, 5\} is g continuous?
(b) At which points a in \{0, 1, 2, 3, 4, 5\} is g continuous from the right?
(c) At which points a in \{0, 1, 2, 3, 4, 5\} is g continuous from the left?
EXAMPLE: The graph of a function g is shown.

(a) At which points a in $\{0, 1, 2, 3, 4, 5\}$ is g continuous?

(b) At which points a in $\{0, 1, 2, 3, 4, 5\}$ is g continuous from the right?

(c) At which points a in $\{0, 1, 2, 3, 4, 5\}$ is g continuous from the left?

Solution:

(a) The function g is continuous at $a = 0, 2, 5$. In fact,

(i) The function g is continuous at $a = 0$, since $\lim_{x \to 0^+} g(x) = g(0) = -1$.

(ii) The function g is not continuous at $a = 1$, since $\lim_{x \to 1^-} g(x) \neq \lim_{x \to 1^+} g(x)$.

(iii) The function g is continuous at $a = 2$, since $\lim_{x \to 2^-} g(x) = \lim_{x \to 2^+} g(x) = g(2) = 0$.

(iv) The function g is not continuous at $a = 3$, since $\lim_{x \to 3^-} g(x) \neq \lim_{x \to 3^+} g(x)$.

(v) The function g is not continuous at $a = 4$, since $g(4)$ does not exist.

(vi) The function g is continuous at $a = 5$, since $\lim_{x \to 5^-} g(x) = g(5) = 1$.

(b) The function g is continuous from the right at $a = 0, 1, 2, 3$. In fact,

(i) The function g is continuous from the right at $a = 0$, since $\lim_{x \to 0^+} g(x) = g(0)$.

(ii) The function g is continuous from the right at $a = 1$, since $\lim_{x \to 1^+} g(x) = g(1)$.

(iii) The function g is continuous from the right at $a = 2$, since $\lim_{x \to 2^+} g(x) = g(2)$.

(iv) The function g is continuous from the right at $a = 3$, since $\lim_{x \to 3^+} g(x) = g(3)$.

(v) The function g is not continuous from the right at $a = 4$, since $g(4)$ does not exist.

(vi) The function g is not continuous from the right at $a = 5$, since $\lim_{x \to 5^+} g(x)$ does not exist.

(c) The function g is continuous from the left at $a = 2, 5$. In fact,

(i) The function g is not continuous from the left at $a = 0$, since $\lim_{x \to 0^-} g(x)$ does not exist.

(ii) The function g is not continuous from the left at $a = 1$, since $\lim_{x \to 1^-} g(x) \neq g(1)$.

(iii) The function g is continuous from the left at $a = 2$, since $\lim_{x \to 2^-} g(x) = g(2)$.

(iv) The function g is not continuous from the left at $a = 3$, since $\lim_{x \to 3^-} g(x) \neq g(3)$.

(v) The function g is not continuous from the left at $a = 4$, since $g(4)$ does not exist.

(vi) The function g is continuous from the left at $a = 5$, since $\lim_{x \to 5^-} g(x) = g(5)$.

4
DEFINITION 3: A function \(f \) is **continuous on an interval** if it is continuous at every point in the interval. (If \(f \) is defined only on one side of an endpoint of the interval, we understand continuous at the endpoint to mean continuous from the right or continuous from the left.)

EXAMPLE: Show that the function \(f(x) = \sqrt{16 - x^4} \) is continuous on the interval \([-2, 2]\).

Solution: If \(-2 < a < 2\), then using the Limit Laws, we have
\[
\lim_{x \to a} f(x) = \lim_{x \to a} \sqrt{16 - x^4} \overset{LL}{=} \sqrt{\lim_{x \to a} (16 - x^4)} \overset{DSP}{=} \sqrt{16 - a^4} = f(a)
\]
therefore by Definition 1 the function is continuous. Similarly, since
\[
\lim_{x \to -2^+} f(x) = \lim_{x \to -2^+} \sqrt{16 - x^4} \overset{LL}{=} \sqrt{\lim_{x \to -2^+} (16 - x^4)} \overset{DSP}{=} \sqrt{16 - (-2)^4} = 0 = f(-2)
\]
and
\[
\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \sqrt{16 - x^4} \overset{LL}{=} \sqrt{\lim_{x \to 2^-} (16 - x^4)} \overset{DSP}{=} \sqrt{16 - 2^4} = 0 = f(2)
\]
it follows that \(f \) is continuous from the right at \(-2\) and continuous from the left at 2. Therefore, according to Definition 3, \(f \) is continuous on \([-2, 2]\).

THEOREM: If \(f \) and \(g \) are continuous at \(a \) and \(c \) is a constant, then the following functions are also continuous at \(a \):
\[
\begin{align*}
&cf, \quad f \pm g, \quad fg, \quad f \div g \quad \text{(if } g(a) \neq 0) \quad \overset{\text{the box}}{\text{results}}
\end{align*}
\]

THEOREM:
(a) Any polynomial is continuous everywhere.
(b) Any rational function is continuous wherever it is defined.

In general, the following is true:

THEOREM: The following types of functions are continuous at every number in their domains: polynomials, rational functions, root functions, trigonometric functions.

EXAMPLES:

1. \(f(x) = 17x^9 + 5x^2 + x - 22 \) is continuous on \((-\infty, \infty)\).
2. \(f(x) = \frac{x + 1}{x - 2} \) is continuous on \((-\infty, 2) \cup (2, \infty)\).
3. \(f(x) = \frac{x}{x} \) is continuous on \((-\infty, 0) \cup (0, \infty)\).
4. \(f(x) = 1 \) is continuous on \((-\infty, \infty)\).
5. \(f(x) = \frac{7x^5 + x - 2}{x^2 - 4} \) is continuous on \((-\infty, -2) \cup (-2, 2) \cup (2, \infty)\).
6. \(f(x) = \sin x + \sqrt{x} - \frac{1}{x - 4} \) is continuous on \([0, 4) \cup (4, \infty)\).
THEOREM: If f is continuous at b and $\lim_{x \to a} g(x) = b$, then $\lim_{x \to a} f(g(x)) = f(b)$. In other words,

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$$

THEOREM: If g is continuous at a and f is continuous at $g(a)$, then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.

EXAMPLES:

1. The function $f(x) = \cos(x^2 + 1)$ is continuous on $(-\infty, \infty)$ by the above Theorem, because $x^2 + 1$ is continuous on $(-\infty, \infty)$ and $\cos x$ is continuous on $(-\infty, \infty)$.

2. The function $f(x) = \sqrt{16 - x^4}$ is continuous on $[-2, 2]$ by the above Theorem, because $16 - x^4$ is continuous on $(-\infty, \infty)$, \sqrt{x} is continuous on $[0, \infty)$ and $16 - x^4 \geq 0$ on $[-2, 2]$.

THE INTERMEDIATE VALUE THEOREM: Suppose that f is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that $f(c) = N$.

EXAMPLE: Show that there is a root of the equation $3x^7 - 2x^5 + x - 1 = 0$ between 0 and 1.
Solution: Put $f(x) = 3x^7 - 2x^5 + x - 1$. One can check that

$$f(0) < 0 \quad \text{and} \quad f(1) > 0$$

From this by the IVT it follows that there exists a number c in $(0, 1)$ such that $f(c) = 0$ since $f(x)$ is continuous (polynomial) and 0 is between $f(0)$ and $f(1)$.

EXAMPLE: Show that there is a root of the equation $x^9 + x = 5$.
Solution 1: Put $f(x) = x^9 + x$. One can check that

$$f(1) < 5 \quad \text{and} \quad f(2) > 5$$

From this by the IVT it follows that there exists a number c in $(1, 2)$ such that $f(c) = 5$ since $f(x)$ is continuous (polynomial) and 5 is between $f(1)$ and $f(2)$.

Solution 2: Put $f(x) = x^9 + x - 5$. One can check that

$$f(1) < 0 \quad \text{and} \quad f(2) > 0$$

From this by the IVT it follows that there exists a number c in $(1, 2)$ such that $f(c) = 0$ since $f(x)$ is continuous (polynomial) and 0 is between $f(1)$ and $f(2)$.